Проектирование фундамента 4-хэтажного администратиного здания маслоперерабатывающего завода в пос. Ахтырский Абинского района
1. На основании технического задания на проведение инженерно-строительных изысканий предприятием «Кубанькомплекссистема» были выполнены топографические и инженерно-геологические работы на объекте: «Завод по производству масел в пос. Ахтырский-2».
2. Топографическая съемка была выполнена в октябре 1997 года
3. Исследованная территория находится в Абинском районе Краснодарского края, на западной окраине поселка Ахтырский-2 по ул. Шоссейной. Площадка частично свободная от застройки, частично занята старыми, находящимися в эксплуатации, и строящимися зданиями производственного назначения. По южной границе площадки растут деревья.
4. Геоморфологическое положение: вторая левая надпойменная терраса реки Кубань.
1. Инженерно–геологические условия строительства
1.1. В геологическом строении исследуемой территории принимают участие аллювиальные и делювиальные отложения, перекрытые с поверхности почвами и насыпными грунтами.
1.2. На основании полевых и лабораторных исследований по типам, видам и разновидностям, согласно ГОСТ 25100-95, выделено 6 инженерно-геологических элементов (ИГЭ).
ИГЭ-1. Насыпные грунты не слежавшиеся, представлены почвами со строительным и бытовым мусором, насыпями щебенисто-насыпных дорог, навалами грунта (на площадке идут строительные работы, отрыта траншея). Мощность насыпных грунтов не велика, их физико-механические свойства не изучались.
ИГЭ-2. Почва темно-бурая суглинистая, твердая и полутвердая, высокопористая, влажная, кислая, с корне- и червеходами, сохранилась на незатронутой строительством части территории и под насыпными грунтами. Содержание гумуса в почвах изменяется от 0,7-0,8% (под насыпными грунтами) до 5,4% (на не затронутых строительством участках).
ИГЭ-3. Глина желтовато-коричневая, коричневато-серая, полутвердая, влажная.
ИГЭ-4. Суглинок коричневато-желтый, твердый, влажный и водонасыщенный, легкий, пылеватый с включением карбонатов. В подошве слоя карбонатные включения составляют 10-20% по массе крена.
ИГЭ-5. Суглинок коричневато серый, полутвердый, водонасыщенный, легкий.
ИГЭ-6. Песок желтовато-серый, гравелистый, водонасыщенный, плотного сложения, с тонкими прослоями суглинка легкого, мягкопластичного.
1.3. Грунты, на изученной территории, набухающими свойствами не обладают.
1.4. Грунты ИГЭ-2,3 обладают сильной степенью агрессивного воздействия на бетонные и железобетонные конструкции на портландцементе по ГОСТ 10178-76 по содержанию сульфатов в перерасчете на SO42-.
Грунты ИГЭ-4,5 обладают слабой степенью агрессивного воздействия для бетонов на портландцементе, шлакопортландцементе по ГОСТ 10178-76 и сульфатостойких цементах по ГОСТ 22266-76 по содержанию хлоридов в перерасчете на CI-.
1.5. Литологические особенности грунтов обуславливают формирование в периоды интенсивных осадков временного горизонта грунтовых вод типа «верховодка» на глубине0,5-1,2м. Таким образом, сооружение и эксплуатация подвалов без надежной гидроизоляции не рекомендуется. Во избежании режима подземных вод и подтопления участка грунтовыми водами типа «верховодка» или техногенными водами следует предусмотреть организацию поверхностного стока, а также мероприятия по снижению утечек из водонесущих коммуникаций.
1.6. Подземные воды обладают слабой степенью агрессивного воздействия на арматуру ж/б конструкций при периодическом смачивании по содержанию хлоридов в перерасчете на CI-. Подземные воды обладают средней степенью агрессивного воздействия на металлические конструкции по суммарному содержанию сульфатов и хлоридов и водородному показателю рН.
Инженерно–геологические условия
Сводная таблица физико-механических характеристик грунтов
Табл. 2.1.
№№ п/п | Полное наименование грунта | Мощность, м | Удельное сцепление с, кПа | Угол внутреннего трения j, град | Модуль общей деформации E, МПа | Табличное значение расчетного сопротивления грунта R0, кПа |
1 | Растительный слой | 0,90 | – | – | – | – |
2 | Почва суглинистая твердая | 0,80 | 47 | 10 | 5 | 200 |
3 | Глина полутвердая | 1,20 | 45 | 16 | 15 | 300 |
4 | Суглинок твердый | 3,50 | 36 | 21 | 18 | 200 |
5 | Суглинок полутвердый | 4,50 | 37 | 21 | 20 | 250 |
Песок гравелистый | 1,40 | 1 | 40 | 40 | 500 |
Здание запроектировано с продольными несущими стенами из кирпича. Наружные стены толщиной 51 см, внутренняя несущая стена толщиной 38 см, перегородки между квартирами (соседними помещениями) – 250мм, Внутренние перегородки толщиной 12 см из кирпича. Окна двойного остекленения размером 150 см по длине и 180см по высоте. Кровля – металлочерепица по обрешетке по стропилам с утеплителем – минераловатные плиты. Перекрытия – сборные ж/б панели, в том числе и пола 1-го этажа. Цоколь высотой 70 см с отделкой темным цветом из кирпича. Между осями А; Б и 1;2 предусмотрен технический подвал ( для расчета стены подвала это приняли условно) высотой (глубиной) 2м. Лестничный марш ж/б шириной 1,35м, ступени размером 15х30 см. Высота этажа – 3м, высота мансардной части стены (до крыши) – 2м.
Сбор нормативных постоянных нагрузок на покрытие (кровля).
Табл. 2.2.
№ № | Вид нагрузки | Нормативная нагрузка, NII, кПа | Коэффициент надежности по нагрузке gf | Расчетная нагрузка, NI, кПа | |
1 | Металлочерепица, вес 1м2 горизонтальной проекции 80 кг/м2 =0,8 кПа | 0,8 | 1,3 | 1,04 | |
2 | Сплошной деревянный настил d=16 мм по стропилам | 0,5 | 1,3 | 0,65 | |
3 | Минераловатные плиты g=125 кг/м3; d=50мм; 1,25х0,05=0,0625 | 0,0625 | 1,2 | 0,075 | |
4 | Пароизоляция – 1 слой рубероида | 0,04 | 1,2 | 0,048 | |
5 | Деревянная обрешетка (настил) d=16мм, g=5 кН/м3; 5х0,016=0,08 кПа | 0,08 | 1,2 | 0,096 | |
6 | Гипсокартон d=10мм; r=1200кН/м3; 12х0,01=0,12 кПа | 0,12 | 1,1 | 0,132 | |
Итого: покрытие | 1,6 | - | 2,04 | ||
Сбор нормативных нагрузок на перекрытие
Табл.2.3.
№ № | Вид нагрузки | Нормативная нагрузка, NII, кН | Коэффициент надежности по нагрузке gf | Расчетная нагрузка, NI, кН | |
1 | Покрытие линолеум ПВХ на тканевой основе d= 2,5мм | 0,1 | 1,2 | 0,12 | |
2 | Прослойка из быстротвердеющей мастики – 10 мм | ||||
3 | Стяжка из легкого бетона М75 r=1300 кг/м3; d=20мм; 13х0,02=0,26 | 0,26 | 1,3 | 0,338 | |
4 | Теплоизоляционный слой ДВП d=25мм; r=200кг/м3; 2х0,025=0,05 кПа | 0,05 | 1,3 | 0,0645 | |
5 | Ж/б плита перекрытия приведенной толщины hпр=8см; 25х0,08=2кПа | 2 | 1,1 | 2,2 | |
Итого: перекрытие | 2,41 | - | 2,723 | ||
Кладка наружных стен из кирпича g=18кН/м3, внутренних - g=14кН/м3; перегородок – тот же кирпич. Вес 1м2 горизонтальной проекции лестничного марша – 3,6 кПа, лестничной площадки – 3кПа. Временные нагрузки на перекрытия – 1,5 кПа, на лестничный марш – 3кПа. Коэф-т снижения временной нагрузки для здания из 4-х этажей на перекрытия y=0,8. Намечаем для сбора нагрузок три сечения:
Сечение 1-1 под наружную стену под лестничный ф-т (без подвала) на длине между оконными проемами – 2,34м;
Сечение 2-2 также под наружную стену (для здания с подвальным помещением) на длине 2,34м. Между серединами оконных проемов и сечения 2-2 на 1м длины внутренней стены. (Все эти сечения показаны на плане 1-го этажа).
Сечение 3-3 под наружную стену под лестничный ф-т (без подвала) на длине между оконными проемами – 2,34м;
А1=А3=2,24х2,34=5,24м2;
А2=2,24х2=4,48м.
Сбор нагрузок для сечения 1-1 А1=5,24м2
Табл. 2.4.
Вид нагрузки | Нормативная нагрузка, NII, кН | Коэффициент надежности по нагрузке gf | Расчетная нагрузка, NI, кН |
1. Постоянная | |||
Покрытие (кровля) NII = 1.6х5,24=8,38 кН NI = 2,04х5,24=10,7 кН | 8,38 | - | 10,7 |
Перекрытие на 4-х этажах (включая и мансарду) NII =4х2,41х5,24=50,52кН NI = 4х2,723х5,24=57,1кН | 50,52 | - | 57,1 |
Вес стены от пола 1-го этажа высотой 9,9м+2м мансарды g=18кН/м3 d=51см на длине 2,34м за вычетом веса оконных проемов размером 1,05х1,8см + вес цоколя высотой 1м 18х((9.9+2)2.24-1,05х1,8)0,51+18х0,51х2,34х1= =259,75кН | 259,75 | 1,1 | 285,7 |
Итого: постоянная нагрузка | 318,65 | - | 353,5 |
2. Временная | |||
Снеговая нагрузка (1-й район) 0,5х5,24=2,62 | 2,62 | 1,4 | 3,67 |
Полезная на перекрытие на 4-х этажах при коэф-те снижения yп = 0,8 4х0,8х1,5х5,24 = 25,16кН | 25,16 | 1,2 | 30,19 |
Итого: временная нагрузка | 27,78 | - | 33,86 |
При учете двух и более временных нагрузок они принимаются с коэф-м сочетаний и расчете на основное сочетание: j1=0,95 – для длительных нагрузок и j2=0,9 – для кратковременных. При расчете на основное сочетание нормативная нагрузка (по II группе) на 1мдлины стены для сеч. 1-1 составит:
NII = кН/м
Сбор нагрузок для сечения 2-2 А2=4,48м2
Табл. 2.5.
Вид нагрузки | Нормативная нагрузка, NII, кН | Коэффициент надежности по нагрузке gf | Расчетная нагрузка, NI, кН |
1. Постоянная | |||
Покрытие (кровля) NII = 1.6х4,48=7,27кН NI = 2,04х4,48=9,14кН | 7,17 | - | 9,14 |
Перекрытие на 4-х этажах (включая и мансарду) NII =4х2,41х4,48=43,19кН NI = 4х2,723х4,48=48,79кН | 43,19 | - | 48,79 |
Вес внутренней стены g=14кН/м3; d=38см; высотой 9,9м 14х0,38х9,9=52,67 | 52,67 | 1,1 | 57,93 |
Итого: постоянная нагрузка | 103,03 | - | 115,87 |
2. Временная | |||
Снеговая нагрузка 0,5х4,48=2,24кН/м | 2,24 | 1,4 | 3,14 |
Полезная на перекрытие на 4-х этажах при коэф-те снижения yп = 0,8 4х0,8х1,5х4,48=91,5кН/м | 21,5 | 1,2 | 25,8 |
Итого: временная нагрузка | 23,74 | - | 28,94 |
Нормативная нагрузка на основное сочетание по сеч.2-2
NII= 103.03+2,24х0,9+21,5х0,95=125,46кН/м
Сбор нагрузок по сечению 3-3 А3=5,24м2 (с подвалом)
Табл. 2.6.
Вид нагрузки | Нормативная нагрузка, NII, кН | Коэффициент надежности по нагрузке gf | Расчетная нагрузка, NI, кН |
1. Постоянная | |||
Покрытие (кровля) NII = 1.6х5,24=8,38 кН NI = 2,04х5,24=10,7 кН | 8,38 | - | 10,7 |
Перекрытие на 4-х этажах NII =4х2,41х5,24=50,52кН NI = 4х2,723х5,24=57,1кН | 50,52 | - | 57,1 |
Вес стены от пола 1-го этажа высотой 10,5м+2м мансарды g=18кН/м3 d=51см на длине 2,34м за вычетом веса оконных проемов размером 1,05х1,8см + вес цоколя высотой 1м 18х((10,5+2)2.24-1.05x1.8)0.51+18х0,51х2,34= =229,68кН | 229,68 | 1,1 | 252,65 |
Вес стены с теплоизоляцией высотой 1,7-9,9=2,8м в один кирпич g= 14кН/м3, толщиной d= 120 мм на длине 2,34м NII=14х2,8х0,12х2,34=11кН | 11 | 1,1 | 12,1 |
Итого: постоянная нагрузка | 299,58 | - | 332,55 |
2. Временная | |||
Снеговая нагрузка 0,5х5,24=2,62 | 2,62 | 1,4 | 3,67 |
Полезная на перекрытие на 4-х этажах при коэф-те снижения yп = 0,8 4х0,8х1,5х5,24 = 25,16кН | 25,16 | 1,2 | 30,19 |
Итого: временная нагрузка | 23,74 | - | 28,94 |
Нормативная нагрузка на 1м длины стены по сеч. 3-3
NII=кН/м
3.1. Проектирование фундамента на естественном основании
3.1.1. Выбор глубины заложения фундамента
Глубину с учетом толщины почвы 0,8м примем равной d1=1,2м.
3.1.2. Подбор размеров подошвы фундамента
Рис.3.1. К определению глубины заложения фундаментов
В соответствии со СНиП 2.02.01–83 условием проведения расчетов по деформациям (второму предельному состоянию) является ограничение среднего по подошве фундамента давления величиной расчетного сопротивления R:
,
где – среднее давление под подошвой фундамента, кПа;
R – расчетное сопротивление грунта основания, кПа.
Предварительная площадь фундамента:
,
где NII – сумма нагрузок для расчетов по второй группе предельных состояний, кПа
R0 – табличное значение расчетного сопротивления грунта, в котором располагается подошва фундамента, кПа;
g’ср – осредненное значение удельного веса тела фундамента и грунтов, залегающих на обрезах его подошвы, g’ср = 20 кН/м3;
d1 – глубина заложения фундаментов безподвальных сооружений или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала.
,
где hS– толщина слоя грунта выше подошвы фундамента со стороны подвала, м;
hcf – толщина конструкции пола подвала, м;
gcf – расчетное сопротивление удельного веса конструкции пола подвала, кН/м3.
.
Для ленточного ф-та b=А/=0,55м; принимаем b=0,6м с укладкой стеновых блоков на бетонную подготовку толщиной 10см.
Рис.3.2. Ленточный фундамент
Определяем расчетное сопротивление грунта основания R для здания без подвала:
,
где gс1 и gс2 – коэффициенты условий работы, учитывающие особенности работы разных грунтов в основании фундаментов, gс1 = 1,1и gс2 = 1,2;
k – коэффициент, принимаемый k = 1,1, т. к. прочностные характеристики грунта приняты по таблицам СНиП.
kz – коэффициент, принимаемый k = 1 (<10м);
– ширина подошвы фундамента, м;
gII и g’II – усредненные расчетные значения удельного веса грунтов, залегающих соответственно ниже подошвы фундамента и выше подошвы фундамента;
сII – расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента, кПа;
db – глубина подвала – расстояние от уровня планировки до пола подвала;
Mr, Mq, Mc – безразмерные коэффициенты;
Mr = 0,32; Mq = 2,29; Mc = 4,85
d1 – глубина заложения фундаментов безподвальных сооружений или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала.
gII=g/II=18,8 кН/м3 – ниже и выше подошвы один и тот же грунт;
b=0,6м;
d1=1,2м
Фактические напряжения под подошвой фундамента (фундамент центрально нагружен):
,
где NII – нормативная вертикальная нагрузка на уровне обреза фундамента, кН;
GfII и GgII – вес фундамента и грунта на его уступах;
A – площадь подошвы фундамента, м2.
GfII=24х0,6х1,2=17,3кН/м – 1м длины;
GgII=0 – вес грунта на обрезах;
Условие выполняется, недогруз фундамента составляет 3,1%, следовательно, размер b=0,6м принимаем окончательным.
3.1.3. Проверка прочности подстилающего слабого слоя
Рис. 3.3. К проверке прочности подстилающего слоя
Подстилающий слой – суглинок твердый, имеет Rо=200кПа
sg(z+d)+szp £ Rz+d , где
sg(z+d) – природное давление на кровлю слабого слоя;
szp - дополнительное давление на кровлю слабого слоя от нагрузки на фундамент;
sg(z+d)=18,8х2=37,6 кПа
szpо=18,8х1,2=22,6 кПа – природное давление под подошвой ф-та;
szp=aро
ро=р-szpо=274,5-22,6=251,9 кПа – дополнительное вертикальное давление на основание;
a - коэф-т рассеивания определяется в зависимости от относительной глубины.
x==
a=;
szp=0,439х251,9=110,6 кПа
Находим ширину условного ф-та bусл из условия:
Аусл= bусл=, где
NII+GII – нормативная нагрузка на подшву фундамента;
szp – дополнительное напряжение на кровлю слабого слоя;
NII+GII=147,4+17,3=164,7 кН/м
bусл=м;
Расчетное сопротивление на глубине z+d=2м.
, где
gс1=1,25
gс2=1
k=1,1
kz=1
gII=19.3 кН/м – ниже подошвы (для суглинка) условного ф-та;
gII/=18,8 кН/м – выше подошвы;
сII=30 кПа – для суглинков;
by=1.49 м;
d+z=2м;
при j=20о;
кПа,
т.к условие:
sg(z+d)+szp =37,6+110,6=148,2 кПа£ Rz+d=340,4 кПа,
то прочность этого слоя обеспечена.
3.1.4. Определение конечных осадок основания
Расчет основания по деформациям производим исходя из условия:
,
где S – совместная деформация основания и сооружения, определяемая расчетом;
Su – предельное значение совместной деформации основания и сооружения,
Для определения осадок используем метод послойного суммирования осадок. Для этого, построим эпюры вертикальных напряжений от собственного веса грунта (эпюру zg) и дополнительных вертикальных напряжений (эпюра zp).
Вертикальные напряжения от собственного веса грунта:
,
где g ‘– удельный вес грунта, расположенного выше подошвы фундамента;
dn – глубина заложения фундамента;
gi, hi – соответственно удельный вес и толщина i–го слоя;
Удельный вес грунтов, залегающих ниже уровня подземных вод, но выше водоупора:
Дополнительные вертикальные напряжения на глубине z от подошвы фундамента:
,
где a – коэффициент, принимаемый по таблицам СНиП в зависимости от формы подошвы фундамента, соотношения его сторон и относительной глубины, равной x = 2z/;
p0 = – zg0 – дополнительное вертикальное давление на основание;
– среднее давление под подошвой фундамента;
szg0 – вертикальное напряжение от собственного веса грунта на уровне подошвы фундамента.
Разбиваем грунт на слои толщиной hi=0.46=0.4х0,6=0,24м,
Ро=251,9 кПа – найдено в предыдущем пункте расчета,
szg0=22,6 кПа,
Расчет осадок проводим по формуле:
,
где – безразмерный коэффициент, = 0,8;
zp,i – среднее значение дополнительного вертикального напряжения в i – том слое;
hi,Ei – соответственно толщина и модуль деформации i–того слоя грунта.
Расчет ведем до тех пор пока szp£0.2szg
Расчет осадки ленточного фундамента
Табл. 3.1.
Z.м | x= 2Z/b | a | zp, кПа | zg, кПа | 0,26zg, кПа | Е, МПа | Si(см) |
0 | 0 | 1 | 251,9 | 22,6 | 4,5 | 15 | - |
0,24 | 0,8 | 0,881 | 222 | 27,0 | 5,4 | 15 | 0,38 |
0,48 | 1,6 | 0,642 | 161,7 | 31,6 | 6,3 | 15 | 0,31 |
0,72 | 2,4 | 0,477 | 120,2 | 36,1 | 7,2 | 15 | 0,225 |
0,96 | 3,2 | 0,374 | 94,2 | 10,6 | 8,1 | 18 | 0,143 |
1,2 | 4,0 | 0,306 | 77,1 | 45,3 | 9,0 | 18 | 0,114 |
1,44 | 4,8 | 0,258 | 65 | 50,10 | 10,0 | 18 | 0,095 |
1,68 | 5,6 | 0,233 | 58,7 | 54,6 | 10,9 | 18 | 0,082 |
1,92 | 6,4 | 0,196 | 49,4 | 59,2 | 11,8 | 18 | 0,072 |
2,16 | 7,2 | 0,175 | 44,1 | 63,9 | 12,8 | 18 | 0,062 |
2,4 | 8,0 | 0,158 | 39,8 | 68,5 | 13,7 | 18 | 0,056 |
2,64 | 8,8 | 0,143 | 36 | 73,1 | 14,6 | 18 | 0,05 |
2,88 | 9,6 | 0,132 | 33,2 | 77,7 | 15,5 | 18 | 0,046 |
3,12 | 10,4 | 0,122 | 30,7 | 82,4 | 16,5 | 18 | 0,043 |
3,36 | 11,2 | 0,113 | 28,4 | 87,0 | 17,4 | 18 | 0,04 |
3,6 | 12,0 | 0,106 | 26,7 | 91,6 | 18,3 | 18 | 0,036 |
åSi= | 1.75см |
Подобные работы: