Физико-химическая очистка сточных вод (цех №12) ОАО "Славнефть-Янос"

Глава 1. ОСОБЕННОСТИ ТЕХНОГЕННЫХ МЕСТОРОЖДЕНИЙ

Техногенные месторождения (ТМ) – техногенные образования (отвалы горнодобывающих предприятий, хвостохранилища обогатительных фабрик, шлакозольные отвалы топливно-энергетического комплекса, шлаки и шламы металлургического производства, шламо-, шлако- и т.д. отвалы химической отрасли) на поверхности Земли по количеству и качеству содержащегося в них минерального сырья пригодные для промышленного использования в настоящее время или в будущем по мере развития науки и техники и изменения экономических условий.

Появившиеся в последние десятилетия техногенные месторождения являются результатом интенсивного развития горнодобывающей и перерабатывающей промышленности. Техногенные месторождения представляют собой класс месторождений, сформировавшихся в районах горнорудной промышленности (Украина, Казахстан, Северо-запад и Юго-восток европейской части Росси, Урал, Юго-восток и Восток азиатской части, Центр Сибири и др.). Эти месторождения обычно обладают своеобразным минеральным составом и являются потенциальным источником разнообразных полезных ископаемых, в частности цветных, редких и благородных металлов, а также строительных материалов (щебень, песок, гравий и т.д.).

На территории Украины в результате деятельности 500 промышленных предприятий только твердых отходов накоплено около 25 млрд. тонн. Эти отходы негативно влияют на природные ландшафты и экологические условия, занимая площадь около 150 тыс. га плодородных земель и ухудшая среду обитания человека. Техногенные месторождения приводят к исключению из хозяйственного оборота больших площадей земель, занятых отходами производства. Так, например, площадь золоотвалов топливно-энергетического комплекса Урала составляет около 3 000 га, а площадь нарушенных земель в медной подотрасли превышает 60 000 га. Значительную площадь (260 га) занимает Черемшанское шламохранилище Высокогорского ГОКа, в котором сосредоточено около 40 млн т отходов обогащения железных руд. Кроме того, происходит уничтожение или снижение качества земель из-за пылевых заносов с отвалов и хвостохранилищ. Например, с 1 га отвалов КМА ежегодно сносится до 500 тонн пыли. Идет загрязнение окружающей среды (почв, поверхностных и подземных вод, атмосферного воздуха) тяжёлыми металлам и солями в концентрациях, нередко превышающих допустимые нормы. Так ориентировочный суммарный объём сброса загрязнённой оборотной воды с золоотвалов АО «Свердловэнерго» составляет не менее 7,6 млн.м3/год. Содержание в сбрасываемой воде таких элементов как F, V и Mn превышает ПДК в десятки и сотни раз. С отвалов Садонских месторождений ежегодно выносится в р. Терек до 3 000 тонн цинка.

На 01.06.2000г имелась информация о 1600 техногенных объектах Украины по 13 областям. За 200 лет промышленной добычи каменных углей в Донбассе и их переработки накоплено громадное количество отходов: на каждого жителя этого региона приходится их около 4000 т. Из 1257 терриконов и отвалов угольных шахт до 35% подвержены процессам самовозгорания угля. Выделяющиеся при этом из очагов горения горячие газы отлагают на поверхности самородную серу, нашатырь и другие техногенные минералы. В радиусе до 3-х км каждый террикон является источником загрязнения воздушной, водной и поверхностной природной среды различными токсинами, в том числе мышьяком, ртутью и др.

В развитых индустриальных странах мира уровень использования промышленных отходов достигает 70-80%, тогда как в Украине и ближнем зарубежье он не превышает 12-15%.

В США, например, из промотходов получают 20% всего алюминия, 33% железа, 50% свинца и цинка, 44% меди и т.д. Подобная тенденция использования вторичных ресурсов наблюдается в Канаде, Великобритании, ЮАР, Испании и других странах. Например:

• В штате Монтана (США) из отвалов рудника Мандиски получают ежегодно 2 т Au и 4 т Ag при содержании в отвалах золота – 0,84 г/т и серебра – 2,8 г/т.

• В штате Мичиган (США) из хвостов обогащения, содержащих 0,3% Cu, достигнуто из-влечение 60% меди.

• В ЮАР из отвалов золотоизвлекательных фабрик при содержании золота – 0,53 г/т и урана – 40 г/т получают 3,5 т золота и 696 т урана в год при производительности 50000 т/сутки.

Для Казахстана, России и Украины, стран, производящих значительную долю всей минеральной продукции мира и обладающих мощным горнопромышленным потенциалом, проблема утилизации промышленных отходов имеет первостепенное значение. Важным обстоятельством является то, что себестоимость товарной продукции из промышленных отходов в 5-15 раз меньше, чем из добываемых традиционными способами руд месторождений полезных ископаемых. Активное использование промышленных отходов минерального сырья позволит получить прибыль в миллиарды долларов ежегодно.

Например, вторичная переработка 150 млн. тонн отходов обогащения марганцевых руд Никопольского района и 500 млн. тонн отходов обогащения железных руд Криворожского бассейна могут дать товарной продукции на 5-7 млрд. долларов. Эти, а также другие данные показывают настоятельную необходимость изучения и утилизации техногенных месторож-дений Украины и, особенно, Донбасса.

1.1 Способы образования и классификация техногенных месторождений

Множественность показателей, характеризующих ТМ, к которым относятся:

• условия образования,

• объёмы,

• вещественный состав,

• характер процессов, преобразующих первичное вещество,

• неоднородность влияния отдельных показателей на принятие технологических решений и экономических оценок и некоторые другие

предопределяют сложность их классификации и типизации.

По морфологическим признакам ТМ можно разделить на 2 типа:

1.Месторождения насыпные, представляющие собой холмы и терриконы. К этому типу относятся:

• терриконы угольных шахт и разрезов;

• отвалы рудников и карьеров руд цветных, чёрных и редких металлов, сложенные дезинтегрированными вскрышными и вмещающими породами, а так же убогими забалансовыми рудами;

• техногенные россыпи, образующиеся при разработке россыпных месторождений и из отходов золоторудных фабрик;

• шлакоотвалы цветной и чёрной металлургии.

2. Месторождения наливные, образующиеся при заполнении впадин земной поверхности. Представителями этого типа ТМ являются:

• отходы обогащения руд (шламо- и хвостохранилища горнообогатительных фабрик);

• шламоотвалы цветной и чёрной металлургии;

• золо- и шлакоотвалы энергетического комплекса, возникающие при гидравлическом удалении золы и шлаков с теплоэлектростанций;

• шламоотвалы химических производств.

По составу техногенные месторождения подразделяются на 4 типа:

1. Породные ТМ, состоящие из природных горных пород и представленные глыбово-щебенистым материалом и шламо- и хвостохранилищами обогатительных фабрик.

2. ТМ пирометаллургических процессов цветной и чёрной металлургии, сложенные шламами и шлаками.

3. ТМ теплоэлектростанций, сложенные золой и шлаками ТЭС.

4. ТМ химического производства (шламы).

По возможным областям использования ТМ подразделяются на 3 типа:

1. ТМ строительного сырья.

2. ТМ (по извлекаемому металлу) – медные, цинковые и т.д.

3. ТМ смешанного типа, т.е. пригодные для получения стройматериалов и металла.

Разработка месторождений первого типа обеспечивает освобождение площадей земли от техногенных отходов с последующей их рекультивацией, второго типа - позволяет осуществить доизвлечение металла, но не решает проблемы освобождения территории отвалов от отходов, так как вторичная переработка отвалов, учитывая низкое содержание в них полезных компонент, практически даёт то же самое количество отходов.

Третий тип техногенных месторождений позволяет осуществлять и рекультивацию земель и доизвлечение металла.

По экологическому воздействию среди техногенных месторождений выделяют:

1. Неопасные, представленные горными породами и глыбовощебенистыми и щебенистыми шлаками цветной и чёрной металлургии, слабо разрушающимися в течение хранения.

2. Поражающие атмосферу и гидросферу, если они сложены окисляющимися или глинизирующимися породами, окисляющимися шлаками и шламами, пылящими шламами и высохшей пульпой хвостохранилищ.

В настоящее время терминология, классификация ТМ, критерии принадлежности их к тому или иному типу меняются и дополняются по мере углубления исследований и практических работ в области разработки техногенных месторождений.

Наиболее удобной представляется классификация ТМ, в основу которой положены условия их формирования, так как они определяют обычно и морфологию, и вещественный состав, и возможные области использования, и экологическое воздействие на ОС (рис.1).

Пользуясь классификацией, представленной на рис.1, можно оценить основные характеристики любого типа месторождений. Например, ТМ горнодобывающих предприятий, возникающие при обогащении руд и представляющие собой хвостохранилища, относятся к месторождениям

• наливного типа (морфологический признак);

• по составу – породные;

• по возможным областям использования – смешанного типа, т.е. пригодные для доизвлечения металла и получения стройматериалов;

• по экологическому воздействию на окружающую среду – поражающие атмосферу (пыль) и гидросферу (фильтрация вод хвостохранилищ через защитные дамбы).

Вовлечение в переработку техногенного сырья обеспечивает:

1. Сокращение расходов на поиски новых и разведку эксплуатируемых месторождений.

2. Сохранение истощающихся минеральных ресурсов в недрах, так как запасов полезных компонент, накопившихся в отходах ГОК’ов, достаточно чтобы удовлетворить потребности на многие десятилетия вперёд.

3. Повышение производительности труда за счёт рентабельной переработки уже добытого сырья, являющегося, по существу, готовым полупродуктом и находящегося вблизи действующих предприятий, что особенно важно для тех из них, для которых вследствие истощения сырьевой базы оказываются незагруженными производственные мощности, и высвобождается рабочая сила.

4. Улучшение условий труда, так как техногенные месторождения расположены на поверхности Земли в отличие от всё более глубокозалегающих обычных месторождений полезных ископаемых.


Рис.1

5. Производство дешёвых стройматериалов (песок, щебень, гравий, цемент, абразивы, материал для отсыпки дорожного полотна, строительства плотин, дамб, и т.д.), а из шлаков - шлаковаты, шлакового литья (брусчатка, тюбинги, плитки, бордюрный камень и т.д.), литого шлакового щебня, стеклокерамических изделий, вяжущих добавок в цемент, минеральных добавок для улучшения почв, удобрений для сельского хозяйства и др.

6. Освобождение занимаемых им земель и их рекультивацию и ликвидацию источников загрязнения окружающей среды , улучшая тем самым экологическую обстановку вокруг действующих предприятий. Это относится к тем техногенным месторождениям, освоение которых сопровождается производством стройматериалов. Если же осуществляется только добыча металлов (цветных, редких и благородных), то из-за низкого их содержания количество техногенных отходов практически не уменьшается.


Глава 2. УСТАНОВКА ДЛЯ СВЕРХКРИТИЧЕСКОЙ ФЛЮИДНОЙ ЭКСТРАКЦИИ КОМПЛЕКСОВ УРАНА ИЗ ТЕХНОГЕННЫХ МЕСТОРОЖДЕНИЙ

Украина обеспечена собственными урановыми ресурсами лишь на 30 %. В то же время в стране имеются техногенные месторождения с высокой концентрацией радиоактивных и токсичных компонентов, представляющие опасность для окружающей среды и здоровья населения. Так, в Днепродзержинске на площади 2,5 млн м2 расположено 7 хвостохранилищ, в которых накоплено около 42 млн т отходов переработки урана, содержащих уран, продукты его распада, мышьяк, селен, торий, радий и т. п.

В ряде промышленных регионов Украины радиоэкологическая обстановка определяется деятельностью угольных шахт. Например, в Донбассе за 200 лет добычи каменных углей и антрацитов образовано 1 257 терриконов общим объемом 1 056 519,9 тыс. м3. Угольные породы занимают 5 526,3 га. Отвалы, особенно горящие, являются источниками пыли и токсичных соединений. Исследования показали, что в отходах гравитационного и флотационного обогащения угля содержание урана составляет 15—150 г/т, тория — 20 г/т.

Таким образом, возникает необходимость в разработке технологий:

— уменьшения количества радиоактивных отходов в процессах получения и переработки ядерного топлива;

— глубокого извлечения актинидов и других элементов из техногенных месторождений.

Внедрение таких технологий позволит повысить объем производства ядерного топлива, а также решить экологические и социальные проблемы регионов.

В ННЦ ХФТИ создана экспериментальная установка СФЭ-U (рис. 1) для извлечения радионуклидов с использованием метода сверхкритической флюидной экстракции углекислым газом (СФЭ-СO2).

Рис. 1. Установка СФЭ-U

Сверхкритическая флюидная экстракция — новейший, перспективный, экологически чистый, сухой метод получения различных материалов из растительного, минерального и техногенного сырья с использованием экстрагентов, находящихся при температуре и давлении выше критических. Наиболее часто применяют углекислый газ, циркулирующий в замкнутом объеме без сброса в атмосферу. Он нетоксичен, неактивен, доступен, дешев и обладает невысокими критическими параметрами (температура 37 °С, давление 7,3 МПа). В отличие от традиционных методов жидкостной экстракции при СФЭ-СО2 экстрагируемое вещество не содержит следов экстрагента.

Содержание урана в материалах определяли гамма-спектрометром СЭГ-50(П) с детектором ДГДК-60В. Погрешность измерения концентраций излучающих изотопов 15 %. На этапе пробоподготовки и установления эффективности экстракции применяли рентгеновский флуоресцентный анализатор КРАБ-3УМ и спектрофотометр СФ-2000 с использованием реагента Арсеназо-III. Суммарная погрешность определения количества урана в образцах составила 10 %.

Модельными материалами служили граниты. Из пяти образцов выбраны № 2 и 4 (условно) с содержанием урана 5,5 и 3,1 мкг/г соответственно.

Образцы дробили, измельчали в порошок с размером зерна менее 50 мкм, после чего заливали 30%-й азотной кислотой в массовом соотношении 1: 1 и выдерживали в течение суток. Полученный раствор смешивали с 20%-м раствором ТБФ в уайтспирите и взбалтывали. После расслоения на лист фильтровальной бумаги диаметром 150 мм наносили 1 мл органической фазы, высушивали для удаления растворителя и помещали в экстракционную ячейку.

Экстракция включала две стадии: быструю (давление 90 атм, температура 38 °С, время 2 мин) и медленную (давление 185 атм, температура 45 °С, время 60 мин). После каждой стадии продукт сбрасывали на стопку из пяти пронумерованных бумажных фильтров. Содержимое каждого из них анализировали на рентгеновском анализаторе. Для получения спектров поглощения задержанного экстракта фильтры на 10 мин погружали в 0,005%-й водный раствор Арсеназо-Ш.

На рис. 2 и 3 представлены спектры поглощения комплексов Арсеназо-Ш с продуктами экстракции гранитов.

Рис. 2. Спектры оптического поглощения комплексов Арсеназо-Ш с продуктами СФЭ-СО2 гранита № 4

Анализ спектров свидетельствует, что основная часть комплексов урана извлекается при быстрой экстракции. Спектр поглощения (сплошная кривая на рис. 2 с характерной резонансной полосой 651 нм) совпадает со спектром поглощения комплекса Арсеназо-Ш—уранилнитрат и указывает на 6-валентное состояние урана в экстракте.

На рис. 3 видно количественное различие в спектрах поглощения продуктов быстрой и медленной стадий. По-видимому, изменение давления и температуры влияет на эффективность извлечения отдельных компонентов исходного материала, в результате чего примеси других элементов экстрагируются в ТБФ и дают дополнительные цветовые реакции с Арсеназо-Ш.

Рис. 3. Спектры оптического поглощения комплексов Арсеназо-Ш с продуктами СФЭ-СО2 гранита № 2

В таблице приведены результаты СФЭ-СО2 урана из исследованных образцов гранита.

Количество урана на фильтрах после экстракции

ОбразецЭкстракцияКоличество урана, мкгСуммарная эффективность, %
СФ-2000KPAБ-3УM
№ 2медленная10,8036
быстрая6,942
№ 4медленная10,23262
быстрая5,212
Актуально: