Разработка дополнительных занятий в школе к теме "Химизм различных способов приготовления пищи"

Проблема пищи всегда была одной из самых важных проблем, стоящих перед человеческим обществом.

Все, кроме кислорода, человек получает для своей жизнедеятельности из пищи. Среднее потребление ее в сутки составляет около 800 г (без воды) и около 2000 г воды. Это дало право И. П. Павлову в 1904 г. при вручении ему Нобелевской премии сказать: «Недаром над всеми явлениями человеческой жизни господствует забота о насущном хлебе».

В настоящее время на нашей планете проживает свыше 6 млрд. человек. Уже сейчас в сутки потребляется более 4 млн. т. пищи, а с ростом населения ее потребление, естественно, будет возрастать. Человечество испытывало и продолжает испытывать дефицит продуктов питания, особенно не хватает продуктов с высоким содержанием белка, однако простое увеличение потребления пищи не может решить всех проблем, связанных с питанием. Оно должно быть рациональным, соответствовать основным положениям науки о питании, требования которой должны учитываться при разработке стратегии развития пищевой промышленности.

Правильная организация питания требует знания, хотя бы в самом общем виде, химического состава пищевого сырья и готовых продуктов питания, представлений о способах их получения, о превращениях, которые происходят при их получении и при кулинарной обработке продуктов, а также сведений о пищеварительных процессах.

Актуальность предлагаемой работы в целом определяется стратегией модернизации содержания общего образования, направленного на обновление его содержание и образовательных технологий. Новые ориентиры в образовании, такие как интеграция, целостное владение мира значительно усиливает практическую направленность курса химии и знаний прикладного характера.

Внеклассная работа поможет установить более тесную связь изучаемого материала с практическим его использованием в жизни, реальную связь химии с проблемами и потребностями общества.

Цель настоящей работы заключается в совершенствовании технологии обучения химии путём разработки содержания и методов проведения лабораторных работ на конкретных уроках, позволяющие реализовать дидактический принцип связи обучения с жизнью.

Методы исследования: анализ научно-популярной, методической и химической и химико-технологической литературы, разработка и анализ проведения педагогического эксперимента с учётом практической его направленности.

В работе поставлены задачи:

1. Информационный поиск и анализ литературных источников по проблеме.

2. Изучение роли химических опытов в учебном и воспитательном процессах школы.

3. Разработка методики проведения опытов в соответствии с материалом, изученным на уроках химии.


1. Основные химические вещества пищи

Наша пища состоит из очень большого числа различных химических веществ: белков, жиров, углеводов, витаминов, минеральных веществ и др. Среди них имеются соединения, которые определяют энергетическую и биологическую ценность, участвуют в формировании структуры, вкуса, цвета и аромата пищевых продуктов. Однако не следует думать, что все они полезны или во всяком случае полезны в любых количествах. Человечество путем проб и ошибок отобрало для своего потребления продукты, которые не содержат вредные вещества. По мере накопления знаний появляются технологии и оборудование, позволяющие создавать новые пищевые продукты, удалять вредные вещества, а полезные представлять в более усвояемой форме.

Рассмотреть подробно все химические компоненты продуктов питания — непосильная задача для этой работы. Поэтому я остановлюсь только на основных группах, имеющих жизненно важное значение. Эти сведения в какой-то мере позволяют представить те сложные превращения, которые происходят при получении пищи, более правильно оценить качество потребляемых продуктов, осмысленнее подходить к своему питанию, сохранить свое здоровье.

Итак, сначала рассмотрим основные химические компоненты пищи (нутриенты), а затем перейдем к химии пищевых производств (1).

1.1 Белки

Белками, или белковыми веществами (протеинами, от греч. protas — первый, важнейший), называют высокомолекулярные (молекулярная масса варьирует от 5—10 тыс. до 1 млн. и более) природные полимеры, молекулы которых построены из остатков аминокислот. Число последних очень сильно колеблется и иногда достигает нескольких тысяч. Каждый белок обладает своей, присущей ему последовательностью расположения аминокислотных остатков.

Биологические функции белков крайне разнообразны. Они выполняют каталитические (ферменты), регуляторные (гормоны), структурные (коллаген, фиброин), двигательные (миозин), транспортные (гемоглобин, миоглобин), защитные (иммуноглобулины, интерферон), запасные (казеин, альбумин, глиадин, зеин) и другие функции. Среди белков встречаются антибиотики и вещества, оказывающие токсическое действие.

Белки составляют основу биомембран, важнейшей составной части клетки и клеточных компонентов. Они играют ключевую роль в жизни клетки, составляя как бы материальную основу ее химической деятельности. Исключительное свойство белка — самоорганизация структуры, т. е. его способность самопроизвольно создавать определенную, свойственную только данному белку пространственную структуру. По существу, вся деятельность организма (развитие, движение, выполнение им его функций и многие другое) связано с белковыми веществами. Без белков невозможно представить себе жизнь.

Белки — важнейшая составная часть пищи человека и животных; поставщик необходимых им аминокислот (16).

1.2 Липиды

Липидами называют сложную смесь органических соединений с близкими физико-химическими свойствами, которые содержатся в растениях, животных и микроорганизмах. Их общими признаками являются: нерастворимость в воде (гидрофобность) и хорошая растворимость в органических растворителях (бензине, диэтиловом эфире, хлороформе и др.), наличие в их молекулах длинноцепочечных углеводородных радикалов (R) и сложноэфирных группировок.

Липиды широко распространены в природе. Вместе с белками и углеводами они составляют основную массу органических веществ всех живых организмов, являясь обязательным компонентом каждой клетки.

Липиды — важнейший компонент пищи, во многом определяет ее пищевую ценность и вкусовое достоинство.

В растениях они накапливаются главным образом в семенах и плодах. Содержание в них липидов зависит не только от индивидуальных особенностей растений, но и от сорта, места и условий произрастания. 

У животных и рыб липиды концентрируются в подкожных жировых тканях, в брюшной полости и тканях, окружающих многие важные органы (сердце, почки), а также в мозговой и нервной тканях. Особенно много липидов в подкожной жировой ткани китов (25—30 % от их массы), тюлений и других морских животных. У наземных животных содержание липидов сильно колеблется - от 33,3% (мясная свинина), 16,0% (говядина) до 3,0% (8).

1.3 Углеводы

Углеводы — обширный класс органических соединений. В клетках живых организмов углеводы являются источниками и аккумуляторами энергии, в растениях (на их долю приходится до 90 % сухого вещества) и некоторых животных (до 20 % сухого вещества) выполняют роль опорного (скелетного) материала, входят в состав многих важнейших природных соединений, выступают в качестве регуляторов ряда важнейших биохимических реакций. В соединении с белками и липидами углеводы образуют сложные высокомолекулярные комплексы, представляющие основу субклеточных структур, а следовательно, основу живой материи. Они входят в состав природных биополимеров — нуклеиновых кислот, участвующих в передаче наследственной информации.

Углеводы образуются в растениях в ходе фотосинтеза, благодаря ассимиляции хлорофиллом, под действием солнечных лучей, углекислого газа, содержащегося в воздухе, а образующийся при этом кислород выделяется в атмосферу. Углеводы являются первыми органическими веществами в кругообороте углерода в природе (17).

1.4 Витамины

Витамины — низкомолекулярные органические соединения различной химической природы, катализаторы, биорегуляторы процессов, протекающих в живом организме. Для нормальной жизнедеятельности человека витамины необходимы в небольших количествах, но так как в организме они не синтезируются в достаточном количестве, то должны поступать с пищей в качестве ее необходимого компонента. Отсутствие или недостаток в организме витаминов вызывает гиповитаминозы (болезни в результате длительного недостатка) и авитаминозы (болезни в результате отсутствия витаминов). При приеме витаминов в количествах, значительно превышающих физиологические нормы, могут развиваться гипервитаминозы. Людям еще в глубокой древности было известно, что отсутствие некоторых продуктов в пищевом рационе может быть причиной тяжелых заболеваний (бери-бери, «куриной слепоты», цинги, рахита), но только в 1880 г. русским ученым Н. И. Луниным была экспериментально доказана необходимость неизвестных в то время компонентов пищи для нормального функционирования организма. Свое название (витамины) они получили по предложению польского биохимика К. Функа (от лат. vita — жизнь). Сейчас известно свыше тридцати соединений, относящихся к витаминам. Различают собственно витамины и витаминоподобные соединения (полная незаменимость которых не всегда доказана). К последним относятся биофлавоноиды (витамины Р), пангамовая кислота (витамин B15), парааминобензойная кислота (витамин H1), оротовая кислота (витамин В13), холин (витамин В4), инозит (витамин B8), метилметионинсульфонийхлорид (витамин U), липоевая кислота, карнитин (витамин В5). В отдельных продуктах содержатся провитамины, т. е. соединения, способные в организме превращаться в витамины. Например, р-каротин переходит в витамин А, эргостеролы под действием ультрафиолетовых лучей в организме человека превращаются в витамин D.

В то же время имеется группа соединений, часто близких к витаминам по строению, которые, конкурируя с витаминами, могут занять место в ферментных системах, но не в состоянии выполнять его функции. Они получили название антивитаминов. Так как химическая природа витаминов была открыта после установления их биологической роли, их условно обозначили буквами латинского алфавита (А, В, С, D и т. д.), они сохранились и до настоящего времени.

В качестве единицы измерения пользуются миллиграммами (1 мг = 10-3 г.), микрограммами (1 мкг == 0,001 мг = 10-6 г) на 1 г продукта или мг % (миллиграммы витаминов на 100 г продукта).

Потребность человека в витаминах зависит от его возраста, состояния здоровья, условий жизни, характера деятельности, времени года, содержания в пище основных компонентов питания.

По растворимости в воде витамины делят на две группы: водорастворимые (B1, B2, B6, PP, С и др.) и жирорастворимые (А, Е, D, К) (17).

1.5 Минеральные вещества

Минеральные вещества не обладают энергетической ценностью, как белки, жиры и углеводы. Однако без них жизнь человека невозможна.

Минеральные вещества выполняют пластическую функцию в процессах жизнедеятельности человека, но особенно велика их роль в построении костной ткани, где преобладают такие элементы, как фосфор и кальций. Минеральные вещества участвуют в важнейших обменных процессах организма — водно-солевом, кислотно-щелочном. Многие ферментативные процессы в организме невозможны без участия тех или иных минеральных веществ. Обычно их делят на две группы: макроэлементы (Са, Р, Mg, Na, К, CI, S), содержащиеся в пище в относительно больших количествах, и микроэлементы (Fe, Zn, Си, I, F и др.), концентрация которых невелика.

Минеральные вещества в большинстве случаев составляют 0,7—1,5 % (в среднем 1 %) съедобной части пищевых продуктов. Исключением являются, конечно, те продукты, в которые добавляют пищевую соль (чаще всего 1,5—3%) (17).

1.6 Пищевые добавки

В пищевой промышленности применяется большая группа веществ, объединяемая общим термином пищевые добавки. Этот термин не имеет единого толкования. В большинстве случаев под этим понятием объединяют группу веществ природного происхождения или получаемых искусственным путем, использование которых необходимо для усовершенствования технологии, получения продуктов специализированного назначения (диетических, лечебных и др.), сохранения требуемых или придания новых, необходимых свойств, повышения стабильности и улучшения органолептических свойств пищевых продуктов. Обычно к пищевым добавкам не относят соединения, повышающие пищевую ценность продуктов питания: витамины, микроэлементы, аминокислоты.

Применение пищевых добавок допустимо только в том случае, если они, даже при длительном использовании, не угрожают здоровью человека. Обычно пищевые добавки разделяют на несколько групп: вещества, улучшающие внешний вид продуктов; вещества, изменяющие консистенцию, иногда в эту группу включают и пищевые поверхностно-активные вещества (ПАВ); ароматизаторы; подслащивающие вещества и вкусовые добавки; вещества, повышающие сохранность продуктов питания и увеличивающих сроки их хранения.

Пищевые добавки используются человеком много веков: соль, специи — перец, гвоздика, мускатный орех, корица, мёд в качестве подслащивающего вещества и др. Однако широкое использование пищевых добавок началось в конце XIX в., оно связано с ростом населения, концентрацией его в городах, необходимостью совершенствования традиционных пищевых технологий, достижениями химии, созданием продуктов специального назначения. Несмотря на существующее у многих индивидуальных потребителей предубеждения, пищевые добавки по остроте, частоте и тяжести возможных заболеваний следует отнести к разряду веществ минимального риска.

Нельзя обойти вниманием такой важный вопрос, как токсичность химических веществ. Обычно под токсичностью понимается способность веществ наносить вред живому организму. Следует отметить, что любое химическое соединение при определенных условиях может быть токсичным, поэтому, по мнению специалистов, более правильно говорить о безвредности вещества при предлагаемом способе его применения. Решающую роль тут играет доза (количество вещества, поступающего в организм в сутки), длительность потребления, режим, пути его поступления в организм и т. д. Эффекты воздействия на организм могут быть также различными (острые, подострые, хронические, отдаленные последствия и т. д.). С целью гигиенической регламентации экспериментально обосновывают предельно допустимые концентрации (ПДК), т. е. концентрации, которые не вызывают при ежедневном воздействии на организм в течение сколь угодно длительного времени отклонений в здоровье. При установлении величины ПДК учитывается очень большое число факторов. Исследования проводятся специальными организациями и регламентируются определенными правилами (18).


2. Химические основы домашнего приготовления пищи

2.1 Основные химические процессы, происходящие при тепловой кулинарной обработке

Около 80 % пищевых продуктов проходит ту или иную тепловую обработку, при которой повышается, правда, до определенных пределов, усвояемость, происходит размягчение продуктов, что делает их доступными для разжевывания. Многие виды мяса, зернобобовых и ряд овощей вообще исчезли бы из нашего питания, если бы не подвергались тепловой обработке. Воздействие теплоты приводит к разрушению вредных микроорганизмов и некоторых токсинов, что обеспечивает необходимую санитарно-гигиеническую безопасность продуктов, в первую очередь животного происхождения (мясо, птица, рыба, молочные продукты) и корнеплодов. Таким образом, тепловая обработка повышает микробиологическую стойкость пищевых продуктов и продлевает срок их хранения. При тепловой обработке некоторых продуктов (например, зернобобовых, яиц) разрушаются ингибиторы ферментов пищеварительного тракта человека, при обработке зерновых (особенно кукурузы) высвобождается витамин РР (ниацин) из неусвояемой неактивной формы — ниацитина. Наконец, немаловажным фактором является то, что различные виды тепловой обработки позволяют разнообразить вкус продуктов, что снижает их «приедаемость».

Однако все это вовсе не означает, что тепловая обработка продуктов не лишена недостатков. При тепловой обработке разрушаются витамины и некоторые биологически активные вещества, частично извлекаются и разрушаются белки, жиры, минеральные вещества, могут образовываться нежелательные вещества (продукты полимеризации жиров, меланоидины и др.). Таким образом, задача рационального приготовления пищи заключается в том, чтобы нужная цель была достигнута при минимальной потере полезных свойств продукта.

Учитывая особенности приготовления растительных и животных продуктов, рассмотрим их отдельно.

2.1.1 Растительные продукты

Отличительной особенностью растительных продуктов является высокое содержание в них углеводов: свыше 70 % сухих веществ. Поэтому рассмотрим их более подробно.

Абсолютное большинство растительных продуктов, используемых в питании человека, — это части растений с живыми паренхимными клетками, в которых и содержатся вещества, представляющие интерес с точки зрения питательности: моно- и олигосахариды и крахмал. Эти клетки имеют первичную оболочку, состоящую из низкомолекулярной целлюлозы и низкомолекулярных фракций гемицеллюлоз, важной отличительной особенностью которых является преобладание между структурными единицами β-1,4-связи, и именно эта связь не разрушается пищеварительными ферментами человека. В срединной пластинке и межклетниках находятся пектиновые вещества, в основе которых лежат остатки D-галактуроновой кислоты, соединенные между собой α-1,4-связями (эта связь также не разрушается пищеварительными ферментами человека). Однако в зависимости от фазы развития живой клетки степень полимеризации может сильно колебаться: от 20 до 200 и более остатков. С увеличением степени полимеризации уменьшается растворимость пектиновых веществ в воде и увеличивается механическая прочность. Так называемый протопектин, с которым связывают механическую прочность плодов, ягод и овощей, представляет собой в действительности высокомолекулярный пектин, образующий за счет связывания воды вторичную структуру, которая благодаря особым свойствам связанной воды придает твердость растительным продуктам. Вместе с тем все растения содержат активные пектинэстеразы и менее активные полигалактуроназы. В определенный период жизни растения эти ферменты активизируются и начинают разрушать вторичную структуру пектина с образованием низкомолекулярных пектинов и воды. При этом происходит размягчение продукта. Этот ферментативный процесс может происходить и при хранении. Поскольку первичная стенка легкопроницаема, а вторичной и тем более третичной стенок в живых клетках нет, образовавшиеся под действием пектолитических ферментов низкомолекулярный пектин и вода частично переходят в протоплазму клеток.

Тепловая обработка растительных продуктов, содержащих заметное количество пектинов (овощи, фрукты, картофель, корнеплоды), также направлена на разрушение вторичной структуры пектина и частичное освобождение воды. Этот процесс начинается при температуре свыше 60 °С и затем ускоряется примерно в 2 раза на каждые 10 ° повышения температуры. В результате в готовом продукте механическая прочность уменьшается более чем в 10 раз. Например, механическая прочность при сжатии сырого картофеля составляет 13-10а Па, вареного 0,5-10й, свеклы — соответственно 29,9-10s и 2,9-105 Па.

Следует отметить, что механическая прочность растительных продуктов зависит также от содержания в них воды. Чем меньше в продукте свободной воды, тем больше его прочность при других равных условиях. (Сублимированные продукты не содержат свободной воды и обладают высокой механической прочностью, которая снижается при их гидратации.) Выделение воды при разрушении протопектина также способствует размягчению продукта.

С учетом сказанного рассмотрим основные процессы, происходящие при тепловой кулинарной обработке. При варке помимо термического распада вторичной структуры пектина происходит насыщение клеток водой (внедрение воды в белки, пектины, крахмал). При этом особое значение имеет гелеобразование крахмала и низкомолекулярного пектина, которые при темпера-туре 60—80 °С внутри продукта становятся частично растворимыми в воде. Хотя крахмал остается в плазме клетки, а пектин— в межклеточном пространстве, извлечение крахмала и пектина происходит не только с поверхностных разрушенных клеток, но и из внутренних слоев. Одновременно при варке экстрагируется ряд водорастворимых веществ (сахаров, аминокислот, органических кислот, минеральных веществ и витаминов) из слоев продукта, соприкасающихся с водой.

В целом же, при варке часто происходит абсолютная потеря воды, величина которой зависит от природы продукта (например, при варке картофеля 2—6 %, капусты — 7—9 %, что объясняется разрушением вторичной структуры пектинов).

Длительность варки зависит от температуры и размеров продукта. При варке под давлением, когда температура повышается против обычной на 2—3°, длительность варки сокращается примерно в 1,5 раза. Мелкие кусочки прогреваются до 70—80 °С во всем объеме быстрее крупных, но при этом увеличивается извлечение водорастворимых веществ. Поэтому степень измельчения не должна быть сильной. На практике установлены оптимальные режимы длительности варки и степени измельчения продукта.

Варка неочищенных продуктов (свеклы, моркови, картофеля в кожуре) не отражается на длительности, но приводит к заметному уменьшению потерь пищевых веществ, так как плотный поверхностный слой (эпидермис, перидерма) препятствует экстрагированию.

Варка на пару также уменьшает потери пищевых веществ по сравнению с варкой в воде, так как экстрагирование идет только с самих поверхностных слоев.

При жарке происходит, в основном, термический распад вторичной структуры пектинов с образованием растворимых пектинов и воды. Крахмальные зерна и низкомолекулярный пектин начинают реагировать с водой и частично переходят в гелеобразное состояние. Однако, если испарение воды из продукта при жарке происходит достаточно интенсивно, гель высыхает, и продукт снова становится твердым, его механическая прочность увеличивается в несколько раз.

Нередко жарку проводят в большом количестве жира (во Фритюре). Фактически это не жарка, а варка в жире. При этом температура среды оказывается выше, чем при обычной варке, размягчение происходит быстрее. Жирорастворимых веществ в растительных продуктах мало, поэтому потери пищевых веществ при жарке во фритюре незначительны, за исключением, конечно, распадающихся при этом витаминов.

Тепловая обработка растительных продуктов, содержащих значительное количество пектина, но много крахмала (зерновые, зернобобовые), сопровождается клейстеризацией крахмала и заключается, как правило, в варке в воде. Поглощение воды, клейстеризующимся крахмалом достигает 100—200 %.

2.1.2 Животные продукты

В животных продуктах наиболее ценным в пищевом и кулинарном отношении является белок. В принципе надо говорить не белок, а белки, так как существует множество фракций, отличающихся по составу и свойствам.

Механическая прочность мясных изделий обусловлена определенной жесткостью третичной структуры белков. Наибольшей жесткостью обладают белки соединительных тканей (коллаген и эластин). Одним из основных, но не единственным фактором обусловливающим жесткость третичной структуры большинства белков животного происхождения за исключением яиц и икры является присутствие в них воды (в форме прочносвязанной' гидратной и др., которые здесь не рассматриваются). В мясных продуктах вода в третичной структуре белка связана главным образом с мышечными белками, а не с соединительнотканными. Содержание соединительнотканных белков зависит от характера сырья, возраста животного и ряда других условий. В среднем, меньше всего их в рыбе (1—4 %), затем в молодых птицах и свинине (до 8 %), больше всего (8—15 %) в убойном мясе говядины и баранины. Тепловая обработка животных продуктов и заключается в частичном разрушении соединительнотканных, а также мышечных белков. Разрушение происходит за счет воды, участвующей в образовании третичной структуры мышечных белков (практически вода в мясе связана главным образом с этими белками) и освобождающейся при их температурной коагуляции. При тепловой обработке высвобожденная вода внедряется непосредственно во вторичную структуру белков (главным образом коллагена), разрушая их и приводя соединительнотканные белки в желатинообразное состояние. Эту фазу часто рассматривают как образование из коллагена глютина. Механическая прочность мясных продуктов при этом заметно уменьшается. Температурная коагуляция белков в зависимости и от их природы начинается с 60°, но в большинстве случаев с 70 0С. При варке и жарке мяса температура внутри изделия в зависимости от вида мяса и величины куска обычно достигает 75—95 °С.

Потери пищевых веществ при варке происходят за счет частичного вытапливания жира и экстрагирования ряда экстрактивных компонентов из тканей (минеральные, азотистые и безазотистые вещества, витамины). При жарке потери обусловлены вытапливанием жира, частичным выделением сока, термическим разрушением витаминов.

Потери воды происходят не только при жарке, но и при варке мясных продуктов в воде, достигая (в отличие от растительных продуктов) заметных величин — в среднем от 30 до 50 % в зависимости от вида мяса. Эти потери происходят за счет разрушения третичной структуры мышечных белков при коагуляции. В то же время вторичная структура неспособна уже удерживать большое количество воды, которая выделяется вместе с рядом водорастворимых веществ во внешнюю воду.

Варка мясных продуктов под давлением вследствие повышения температуры ускоряет желатинизацию и сокращает, таким образом, время для получения готового продукта.

Минимальные потери пищевых веществ наблюдаются при тушении и запекании. Сравнительно небольшие потери происходят при использовании мяса в виде котлет (выделяющиеся при жарке вещества удерживаются находящимся в котлетах хлебом) (13).

2.2 Изменение пищевой ценности продуктов при тепловой обработке

В связи с тем, что процессы, происходящие при тепловой обработке растительных и животных продуктов, как это показано выше, заметно отличаются, рассмотрим изменение их пищевой ценности раздельно.

В растительных продуктах большая часть пищевых веществ теряется при жарке: в среднем 5 % белков и 10 % жира, причем главным образом не собственного, которого в растительных продуктах содержится в большинстве случаев очень мало, а добавленного для жарки. Велики потери углеводов, (10—20%) и минеральных веществ (до 20 %) в результате вытекания сока и образования корочки.

Потери при варке в сильной степени зависят от способа термической обработки. Если варка производится без слива (например, при варке супов, киселей, компотов, некоторых каш и т. д.), потери почти всех пищевых веществ минимальны: 2— 5% белков, жиров, углеводов и минеральных веществ. Наблюдается сильное разрушение витамина С (60 %) и лишь частичное (10—15%) разрушение витаминов группы В и β-каротина. При варке большинства овощей, некоторых каш (рисовая), макаронных изделий, где производится слив, потери с отваром белков, жиров, витаминов, минеральных веществ увеличиваются в 2—3 раза и приближаются к потерям при жарке (21).

2.2.1 Потери при тушении, запекании, припускании и пассеровании

Необходимо отметить особенности приготовления отдельных видов продуктов. Например, при варке картофеля в кожуре потери углеводов и минеральных веществ и всех витаминов, в том числе витамина С, уменьшаются примерно в 1,5 раза по сравнению с потерями при варке очищенного картофеля. При тушении же капусты потери ряда пищевых веществ в 2—3 раза выше, чем при припускании. Величина потерь зависит также от степени Измельчения продукта, интенсивности тепловой обработки и т. п.

Наибольшие потери важных пищевых веществ в процессе тепловой обработки животных продуктов наблюдаются при варке: белков 10 %, жиров 25 %, минеральных веществ и витаминов группы В 30 %, витамина А 50 % и витамина С 70 % за счет перехода в бульон и частичного распада. При жаркемяса потери минеральных веществ и витаминов примерно в 1 к раза меньше, чем при варке, белка — такие же, а жира — несколько больше (за счет потерь жира, добавленного при жарке) Эти потери происходят в основном в результате вытекания сока образования корочки и частичного разложения пищевых веществ при нагревании. Минимальные потери (5 % белков, жиров и минеральных веществ, 15—30 % витаминов, кроме витамина С, последний разрушается на 70 %) наблюдаются при тушении и запекании, которое можно рассматривать как один из видов тушения.

При жарке мелкими кусками потери всех пищевых веществ значительно (почти в 2 раза) меньше, чем при жарке крупным куском, вследствие меньшей длительности тепловой обработки мелкокускового полуфабриката мяса.

Потери ряда пищевых веществ при тепловой обработке рыбы в сильной степени зависят от ее жирности. Так, потери белка (8 %) и жира (9 %) при варке тощей рыбы (жирностью до 4 %) были в среднем в 1,5 раза меньше, чем при варке жирной (жирностью более 8 %) — 14 % белка и 12 % жира. При жарке, наоборот, потери белка (13 %) и жира (27 %) в процессе обработки тощей рыбы значительно выше, чем жирной (9 % белка и 13% жира). При припускании жирность рыбы в значительно меньшей степени влияет на потери белка и жира. Поскольку большое влияние на величину потерь оказывает видовой состав рыб, сделать какие-либо общие рекомендации по потерям при тепловой обработке рыбы весьма затруднительно.

Значительная (до ⅓) доля животного сырья в общественном питании используется для приготовления котлет. Это весьма рациональный способ кулинарной обработки. Потери белка при жарке котлет по сравнению с натуральным продуктом сокращаются примерно в 2 раза (5% против 10%), жира — на ⅓, минеральных веществ и витаминов — в 1,5—2 раза. Но все же эти потери выше, чем при тушении. Пищевые вещества в котлетах сохраняются за счет того, что сок, выделяющийся из мяса при жарке, впитывается, как указывалось выше, в хлеб, добавленный в котлетную массу, и в минимальной степени попадает на жарочную поверхность. Еще меньше (почти в 2 раза) потери пищевых веществ, особенно жира, минеральных веществ и витаминов, при варке котлет на пару. Потери пищевых веществ в этом случае весьма близки к потерям при тушении.

Для быстрого и приближенного расчета рационов часто бывает необходимо знать величины суммарных потерь пищевых веществ при различных видах тепловой кулинарной обработки. В табл. I приведены усредненные данные по потерям пищевых веществ, обычно учитываемых при составлении диет, в растительных и животных продуктах с учетом двух наиболее распространенных видов тепловой обработки: варки и жарки. Там жеприведены аналогичные сведения в целом по дневному рациону (при соотношении растительных и животных продуктов 7:3).

Таблица I. Обобщенные величины потерь пищевых веществ при тепловой кулинарной обработке продуктов, %

ПродуктыБелкиЖирыУглеводыМинеральные веществаВитаминиЭнергетическая ценность, Ккал
CaMgPFeAβ - каротин

В1

В2

РРС
Растительные56910101010 –2025152060 –
Животные825 –1520202040 –35302060 –
В среднемСорбируемость меди на бурых углях, сапропелях и выделенных из них гуминовых кислотах


Теоретические основы электрохимической коррозии


Химический элемент калий


Влияние концентрации аниона хлора на адсорбцию органического соединения реакционной серии оксиазометина на цинковом электроде


Проектирование вертикального аппарата с приводом и мешалкой


Актуально: