Расчёт металлургической печи

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра теплофизики

Курсовая работа

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

по теплотехнике

на тему:

«Расчёт металлургической печи»

Липецк 2001


Аннотация

С. 36, рис. 6, табл. 3, прил. 2, библ. 8 назв.

 В данной работе рассчитывается методическая печь с двусторонним обогревом, предназначенная для нагрева изделий из углеродистой стали Ст20 размерами 230´850´9200. Производительность рассчитываемой печи составляет 155 т/ч. Печь обогревается продуктами сгорания смеси природно-доменного газа.


Содержание.

1. Расчёт горения топлива……………………………………….….…4

2. Расчёт нагрева металла……………………………………..……...10

2.1. Расчёт основных размеров рабочей камеры и

параметров внешнего теплообмена…………………………….…….10

2.2. 1-я ступень нагрева – методическая зона …………………11

 2.3. 2-я ступень нагрева – сварочная зона ……………………….……..14

2.4. 3-я ступень нагрева – томильная зона..……………………….….…17

3. Тепловой баланс методической печи….……………………...…..19

4. Расчёт керамического рекуператора …….……………………….30

4.1.Определение коэффициента теплоотдачи

продуктов сгорания……………………………………………………...31

4.2. Определение требуемой поверхности теплообмена……………...31

4.3. Определение размеров рекуператора……………………………...33

4.4. Окончательные размеры рекуператора……………………………34

4.5. Расчет аэродинамического сопротивления воздушного тракта…35

4.6. Расчет аэродинамического сопротивления тракта продуктов сгорания……………………………………………………………………...…...36

5. Выбор горелочных устройств …….………………………..…….37

6. Расчет газового, воздушного и дымового

трактов нагревательных печей………………...…………….…………...38

6.1. Определение размеров газо- и воздухопроводов …………40

6.2.  Расчет дымового тракта…………………………………….40

6.3.Аэродинамический расчёт дымового тракта……………...……..41

Библиографический список….………….…….………………………….42

Приложения………………………..…….………………………….…….45


1. Расчёт горения топлива.

Производим расчет горения смеси природно-доменного газа с теплотой сгорания Qpн=8100 кДж/м3 в нагревательном колодце для нагрева слитков до 1230оС.

В нагревательных колодцах применяют горелки без предварительного смешения газа с воздухом, поэтому принимаем коэффициент расхода воздуха a=1,1.

Из справочной литературы берем состав сухих газов.

Таблица 1

Состав сухих газов

Газ

СО2

СО

СН4

С2Н6

Н2

N2

С4Н10

Всего
доменный10,027,40,9-3,358,4-100
природный--92,20,8-6,01,0100

Принимаем влажность газов:

- доменного W1=30 г/м3,

-  природного W2=10 г/м3.

Определяем содержание влаги во влажном газе:

доменном

Н2О=100×W1/(803,6+ W1)=3,598 %,

природном

Н2О=100×W2/(803,6+ W2)= 1,229 %.

Пересчитаем состав сухих газов на влажные.

Доменный газ.

Содержание СО2 во влажном газе:

 =9,64 %.

Аналогично находим содержание других компонентов во влажном доменном газе.

Химический состав влажного доменного газа, %:

СО2Р СОР СН4Р Н2Р N2Р Н2О Всего

9,64 26,41 0,867 3,18 56,29 3,598 100

Таким же путем определяем состав влажного природного газа:

СН4Р С2Н6Р N2Р С4Н10Р Н2О Всего

91,06 0,79 5,926 0,987 1,229 100

Определяем низшую теплоту сгорания газов:

- доменного

QнР=126,45×СО+107,6×Н2+358×СН4=3992,712 кДж/м3

- природного

QнР=358×СН4+635× С2Н6+1253,36× С4Н10=34340,34 кДж/м3

Находим долю доменного газа в смеси:

=0,864

Доля природного газа (1-)=0,135.

Определяем состав смеси влажного газа:

Х=×Х1+(1-)×Х2,

где Х1-содержание данного компонента (например СО2,% ) в доменном газе;

 Х2-то же, в природном газе.

Находим содержание СО2 в смешанном газе:

=0,864×9,64+0=8,329 %

Аналогично определяем содержание других компонентов смешанного газа и получаем его состав, %:

СО2 СО СН4 Н2 N2 С2Н6 С4Н10 Н2О Всего

 8,329 22,82 13,07 2,748 49,44 0,106 0,133 3,27 100

Для проверки точности расчета определяем теплоту сгорания смешанного газа:

QнР=126,45×СО+107,6×Н2+358×СН4+635× С2Н6+1253,36×С4Н10=8095,6кДж/м3

Определяем ошибку теплоты сгорания:

dQ=×100=5,4×10-4 %<0,5%.

Разность между расчетной и заданной теплотой сгорания смешанного газа не превышает ± 0,5 %.

Табличным способом рассчитываем удельное теоретическое количество воздуха и продуктов горения (табл. 2)

Таблица 2

Расчет горения топлива

Участвуют в горении
Получено газооб-

разных продуктов

Топливо

Воздух

Сос-

тав

Содер

жание

%

Кол-

во,

м3

Реакции

горения

О2,

м3

N2,

м3

Все

го

м3

СО2,

м3

Н2О,

м3

N2,

м3

Всего

м3

Н2

2,742,74

Н2+0,5О22О

1,3740,16×3,76151,01+40,16-2,7482,7480
СО22,8222,82

СО+0,5О2= СО2

11,422,82-22,827
СН13,0713,07

СН4+2О2=СО2+2Н2О

26,113,0726,1439,210

СО2

8,338,33--8,33-

49,44

- +

151,0

8,3290

N2

49,4449,44----200,45

С2Н6

0,1060,106

С2Н6+3,5О2=2СО2+3Н2О

0,370,2130,3200,5334

С4Н10

0,1330,133

С4Н10+6,5О2=4СО2+5Н2О

0,860,5340,6671,2015

Н2О

3,2753,275---3,2753,275
Всего10010040,115119144,9733,15200,4278,57

На 1 м3 газа

0,41,511,910,4490,3312,0042,7857

Используя данные табл.2, определяем удельное действительное количество воздуха, количество и состав продуктов горения для принятого коэффициента расхода воздуха a=1,1.

Удельное количество воздуха:

VВ=VВ0+(a-1)× VВ0=1,1×1,911=2,102 м3

Удельное количество продуктов горения:

Vп= Vп0+(a-1)×VВ0=2,785+0,1×1,911=2,976 м33.

Удельное количество азота:

VN= VN0+(a-1)×VNВ0=2,005+0,151=2,155 м33.

Удельное количество кислорода:

VО= (a-1)×VОВ0=0,0401 м33.

Удельное количество других компонентов продуктов горения (табл. 2):

=0,4497 м33

=0,3315 м33.

Состав продуктов горения:

СО2= /Vп×100%=15,11%,

N2=VN2/Vп×100%=72,41%,

Н2О=/Vп×100%=11,14%,

О2=VО2/ Vп×100%=1,34%.

Плотность среды:

+ +mН2О×Н2О/(100×22,4)=2674,381/2240=1,194 кг/м3.

rво=1,293 кг/м3 - плотность воздуха.

Плотность продуктов сгорания:

=2936,026/2240=1,31 кг/м3.

Точность расчета проверяем составлением материального баланса горения на 1 м3 газа. Поступило:

- газа rГО×VГ=1,194×1=1,194 кг;

- воздуха rво×VВ=2,102×1,293=2,718 кг.

Всего: Му=1,194+2,718=3,912 кг.

Получено продуктов сгорания:

 Мп=rпо×Vп=2,976×1,310=3,9 кг.

Баланс выполнен, если невязка меньше 0,5%:

.

Расчет калориметрической температуры горения.

Энтальпия продуктов горения:

iп=Qpн/Vп=8095,6/2,976=2720,295 кДж/м3.

Предварительно принимаем температуру t1=1700°C и находим энтальпию продуктов горения:

=(4087,1×15,11+2486,28×72,4++2632,09×11,139+3203,05×1,347)×10-2=2754,3 кДж/м3.

Так как i1>iп, то действительная калориметрическая температура горения меньше 1700°C.

Повторно принимаем t2=1600°C.

Энтальпия продуктов горения при t2=1600°C:

i2=(3815,86×15,11+2328,65×72,4+2463,97×11,139+2979,13×1,347)×10-2= =2577,427 кДж/м3.

Имеем i2<in<i1,следовательно, t2k1.

 Интерполяцией находим:

=1700 – 19,225=1680,775°С.

Требуемая калориметрическая температура:

=(1230+100)/0,7=1900°С,

где tМ=1230 – температура нагрева сляба,

 Dt=100 – т.к. методическая печь с трех ступенчатым режимом нагрева,

 h=0,7 – т.к. методическая печь.

Т.к. tk < tkТР , то необходим подогрев воздуха.

Энтальпию продуктов горения при tkТР=1900°С находим экстраполяцией:

=3105,035 кДж/м3.

Определяем минимальную необходимую температуру подогрева воздуха:

 кДж/м3.

Принимаем при t¢1=400°C i¢1=532,08кДж/м3 и при t¢2=500°C i¢2=672,01кДж/м3,

а затем интерполяцией находим:

=454,34°С.

Следовательно, для получения температуры печи 1330°С температура подогрева воздуха должна быть 454°С.


2. Расчёт нагрева металла.

2.1 Расчёт основных размеров рабочей камеры и параметров

теплообмена.

 Примем напряжённость рабочего пода P=600

 Площадь рабочего пода:

 Длина рабочего пода:

где l – длина заготовки, м.

 Допускаемая длина рабочего пода:

где d - толщина заготовки, м;

 k – коэффициент, характеризующий наклон пода к горизонтали (2. стр.27).

 Так как Lpпр, принимаем однорядную укладку заготовок, nр=1.

 Ширина пода при e=0,2 м:

где е – промежуток между стенкой печи и металлом и между рядами заготовок.

Размеры нагреваемого сляба: d×B×l=230´850´9200 (мм).

Посад холодный, температура нагрева Ме – 1230 °С.

Производительность печи: 155 т/ч.

Состав стали: С=0,3%; Si=0,15%; Mn=0,3 %.

Теплопроводность углеродистой стали при 0°С:

l=70-10,1×С-16,8×Mn-33,8×Si=70-10,1×0,3-33,8×0,15=56,86 Вт/(м2×К).

Метод нагрева в печи принимается двусторонний. Коэффициент несимметричности нагрева m=0,55 при двустороннем нагреве на поду из водо-охлаждаемых труб. Подогреваемая толщина изделия:

S=m×d=0,55×0,23=126,5 мм.

Максимальная рабочая температура газов (печи) - tп=1330°С.

2.2 1-я ступень нагрева – методическая зона.

Начальные температуры металла: поверхности tми=0°С

 середины tсм=0°С .

Конечная температура середины заготовки – tск=600°С .

Разность температур между поверхностью и серединой заготовки (700-800)×S принимаем равной 90°С. Тогда конечная температура поверхности заготовки – tмк=690°С. Средняя теплопроводность металла в процессе нагрева данной ступени: l=0,9×56,86=51,174 Вт/(м2×К).

Конечная средняя по массе температура металла:

`tк=( tск+ tмк)/2=(600+690)/2=645°С.

Конечное теплосодержание металла при 645°С принимаю:

Средняя теплоемкость металла от начальной температуры 0°С до конечной 640°С:

.

Средний коэффициент температуропроводности металла:

аср=l/(С×r)=51,174/(0,5826×103×7800)=0,011259×10-3 м2/с.

На основе анализа рекомендуемых чертежей принимаем высоту свободного пространства над металлом H0=1 м.

 Эффективная длина луча:

Произведение эффективной длины на парциальное давление излучающих газов:

При температуре печи (газов) 1100°С степень черноты а поправка для

Степень черноты газов:

а степень черноты металла принимается eм=0,8.

Степень развития кладки:

Приведённый коэффициент излучения:

где С0=5,7–коэффициент излучения абсолютно чёрного тела.

Начальное значение коэффициента теплоотдачи излучением (при t0=1000°C, tп=0°C) и конечное значение - (при t0=1330°C, tп=690°C) рассчитываем соответственно по формулам:

Среднее значение коэффициента теплоотдачи излучением вычисляем по формуле:

.

Коэффициента теплоотдачи конвекцией принимается aКОН =15 Вт/(м2×К).

Суммарное значение коэффициента теплоотдачи:

.

Определяем критерий БИО по формуле:

.

Температурный критерий для середины заготовки:

.

По графикам Д.В. Будрина (2,прил.5) для Bi=0,3304 и q=0,4849; критерий Фурье равен Fo=2,8.

Время нагрева металла в методической зоне печи определяется как:

.

При значениях Bi=0,3304 и Fo=2,8 по графику Д.В. Будрина для поверхности пластины (2,прил.5) температурный критерий qп=0,42. Откуда:

=1165-1165×0,42=675,7°С.

Ранее была принята =690°С. Расхождения между принятой и полученной температурами составляет 14,3°С, и оно не может отразиться на результатах расчета.

2.3 2-я ступень нагрева – сварочная зона.

Температура металла начальная:

tcн=600°С и tпн=675°С, tм=1230°С .

Конечная температура середины металла - tcк=1165°С.

Средняя температура металла по массе и времени:

Средняя теплопроводность металла:

l913=0,68×l0=0,68×56,86=38,664 Вт/(м2×К).

Начальная средняя по массе температура металла:

tcр=(600+675)/2=637,5°С.

Начальное теплосодержание металла при 637,5°С (2, прил.3):

.

Конечная средняя по массе температура металла:

tcр=(1230+1165)/2=1197,5°С.

Конечное теплосодержание металла при 1197,5°С (2, прил.3):

.

Средняя теплоемкость металла от начальной температуры 637,5°С до конечной 1197,5°С:

.

На основе анализа рекомендуемых чертежей принимаем высоту свободного пространства над металлом в сварочной зоне H0=1,7 м.

 Эффективная длина луча:

Произведение эффективной длины на парциальное давление излучающих газов:

При температуре печи (газов) 1330°С степень черноты а поправка для -  (2,прил. 4).

Степень черноты газов:

а степень черноты металла принимается eм=0,8.

Степень развития кладки:

Приведённый коэффициент излучения:

где С0=5,7–коэффициент излучения абсолютно чёрного тела.

Средний коэффициент температуропроводности металла:

аср=l913/(С637×r)=38,664 /(×103×7800)= 5,9291×10-6 м2/с.

Начальное значение коэффициента теплоотдачи излучением (при t0=1330°C, tп=675°C) и конечное значение - (при t0=1330°C, tп=1230°C) рассчитываем соответственно по формулам:

Среднее значение коэффициента теплоотдачи излучением вычисляем по формуле:

.

Коэффициента теплоотдачи конвекцией принимается aКОН =15 Вт/(м2×К).

Суммарное значение коэффициента теплоотдачи:

.

Определяем критерий БИО по формуле:

.

Температурный критерий для поверхности заготовки:

По графикам Д.В. Будрина (2,прил.7) для Bi=0,8584 и q=0,1526; критерий Фурье равен Fo=2,6.

Время нагрева металла в сварочной зоне печи определяется как:

.

При значениях Bi=0,8584 и Fo=2,6 по графику Д.В. Будрина для поверхности пластины (2,прил.6) температурный критерий для середины заготовкиqс=0,21. Откуда:

=1330-1330×0,21=1176°С.

Ранее была принята =1165°С. Расхождения между принятой и полученной температурами составляет 11°С, и оно не может отразиться на результатах расчета.

При нагреве заготовок перепад температур по толщине заготовки принимаем Dtм=(250¸300)×S=(31,6¸37,95)°C, выбираем Dtмк=30°C.

2.4 3-я ступень нагрева – томильная зона.

Температуры металла:

- начальные tмн=1230°С , tcн=1176°С;

- конечные tмк=1230°С , tcк=1200°С.

Средняя температура металла по массе и времени:

Средняя теплопроводность металла:

l1209=0,72×l0=0,72×56,86=40,939 Вт/(м2×К).

Начальная средняя по массе температура металла:

tcр=(1230+1176)/2=1203°С.

Конечная средняя по массе температура металла:

tcр=(1230+1200)/2=1215°С.

Полученные температуры мало отличаются между собой, так что теплоемкость от 1203°С до 1215°С можно принимать равной теплоемкости от 0 до (1203+1215)/2=1209°С.

Теплосодержание стали при 1209°С (2,прил.3):

.

Средняя теплоемкость металла от 0 до 1209°С:

.

Средний коэффициент температуропроводности металла:

 аср=l1209/(С×r)=40,939 /(0,7×103×7800)= 7,498×10-6 м2/с.

Степень выравнивания температур:

,

где = tМНtСН=1230 – 1176=54°С.

По графику (2,прил.6) для коэффициента несимметричности нагрева m = 0,5 находим критерий Fo по формуле:

.

Продолжительность выдержки металла в томильной зоне:

.

Общее время нагрева металла в печи:

St=t1+t2+t3=1,105+1,949+0,414=3,469ч


3. Тепловой баланс методической печи.

Приход тепла.

1)Определим химическое тепло топлива:

где В(м3/с) – расход газа подаваемого па печь.

 2)Физическое тепло воздуха:

где iВ – энтальпия воздуха при tВ=454 оС (3. стр.37).

 3)Тепло экзотермических реакций:

где а=0,012 – доля окисленного металла (4. стр.8);

 5650 – тепловой эффект окисления 1 кг железа,  (3. стр.8);

 G=155 т/ч – производительность печи.

 Общий приход тепла:

 Расход тепла.

 1) Расход тепла на нагрев металла:

где iк=861(кДж/кг) и iн=0(кДж/кг) - энтальпия металла в конце и начале нагрева.

2) Потери тепла на нагрев окалины:

где m – количество окалины от окисления 1 кг железа, m=1,38

 С0 – теплоёмкость окалины, С0=1

 tм=1503(К) и tн - температура окалины, принимается равной температуре поверхности металла соответственно в начале и конце нагрева.

 3) Потери тепла с уходящими газами:

Энтальпия уходящих газов:

4)Потери тепла через кладку теплопроводностью.

Стены печи двухслойные выполненные:

- внутренний слой – ША h=348 мм;

- внешний – диатомитовый кирпич h=116 мм.

Под печи трехслойный:

- первый (внутренний) слой – хромомагнезитовый кирпич;

- второй (рабочий) слой – ШБ (шамотный кирпич класса Б);

- третий слой – Д-500 теплоизоляционный диатомитовый кирпич.

Свод печи однослойный выполнен из каолинового кирпича: ШБ 300 мм.

 Формулы для расчёта теплопроводности материалов кладки:

 Шамотный кирпич ША:

 Хромомагнезитовый кирпич:

 Шамотный кирпич ШБ :

 Диатомовый кирпич Д-500:

Каолиновый кирпич:

где - средняя по толщине температура слоя.

 а)Расчет стены печи:

Толщина стенки, мм

Актуально: