Высшая математика

(шпаргалка)

Осн. понятия

Грани числовых мн-в

Числовые последовательности

Непр. ф-ции на пр-ке

1. Осн. понятия

Мат.модель – любой набор кр-ний; неравенств и иных мат. Соотношений, которая в совокупности описывает интересующий нас объект.

Мн-во вещест. чисел разбивается: на рационал. и иррац. Рац. – число, которое можно представить в виде p/q где p и q – цел. числа. Иррац. – всякое вещественное число, которое не явл. рационал.

Любое вещ. число можно представить в виде бесконеч. десят. Дроби а, а1,а2…аn… где а –люб. число, а а1, а2 … аn числа, приним. целые знач.

Некоторые числовые множества.

Мн-ва – первичное понятие, на уровне здравого смысла, его не возможно точно определить.

Для описания мн-в единая символика, а именно, если в мн-во А входят только эл. х, которые обладают некоторым св-вом S(x), то тогда мн-во А описывается А={х½ вып-ся усл S(x)}.

Подмн-ва – если А и В 2 мн-ва и все эл-ты мн-ва А сод-ся в В, то А наз-ся подмн-вом В, А В, если в В сод-ся эл-ты отличные от эл-тов мн-ва А, то В строго шире А, то А наз-ся собственным подмн-вом В. АÌВ. А=В- мн-ва совпадают.

Операции с мн-воми А В={х!х принадл. либо А, либо В} – обьединение мн-в А и В.

АÇ В={х½хÎА и хÎВ} пересечение мн-в А и В.

А В={х½хÎА, но хÏВ}дополн. к м-ву В во мн-ве А

Числовые мн-ва

R,N,Z,Q - стандартные обозначения мн-в на числ. прямой. (а,в)= {х½а<х<в} – интервал из R (открытый промежуток, т.к. не содержит границ)

(а,в) – замкнутый промежуток сод. гранич. т-ки.

(а,в) – полуинтервал.

Окрестностью т-ки х наз-ся любой интервал содержащий т-ку х, необязательно симметричную.

2. Грани числовых мн-в

Пусть Х – непустое мн-во веществ. чисел.

Мн-во Х назся огран. сверху(снизу), если сущ-ет число с такое, что для любого х Х вып-ся неравенство с³х(х³с). Число с наз-ся верхн.(нижн.) гранью мн-ва Х. Мн-во, огран. сверху и снизу наз-ся ограниченым

Если мн-во имеет 1 верхнюю грань то она имеет их бесчисленное мн-во.

Пример X=R+ - ограничено снизу, но не сверху, значит не ограничено.

Точные грани числовых мн-в

Пусть мн-во Х ограничено сверху, если это мн-во содержит макс число, т.е. наименьшую из своих верхних граней, то это число назся макс мн-ва Х и обозначается Х*=maxX. Если мн-во содержит мин число Х* , то оно min мн-ва Х

Пример Х=(0,1) то max(0,1) не $. min (0,1)=0

Число Х* наз-ся точной верхн. гранью, мн-ва Х, если во-первых оно явл. верхн. гранью этого мн-ва, а во-вторых при сколь угодном уменьшении Х* получ. число перестает быть верх. гранью мн-ва.

Верхн. грань – supX=x*, а нижн. грань infX=x*

Теорема. Любое непустое ограниченное сверху (снизу) числ. мн-во имеет точную верх(ниж) грань.

Таким образом у огран. мн-ва обе грани $, док-во основано на непрерывности мн-ва действит. чисел.

3. Числовые последовательности

Если для каждого нат. числа n определено некоторое правило сопоставляющее ему число xn, то мн-во чисел х1,х2, … ,хn, … наз-ся числовой последовательностью и обозначается {xn}, причем числа образующие данную посл-ть наз-ся ее эл-ми, а эл-т хn общим эл-том посл-ти .

!Порядок следования эл-тов оч. важен, перестановка хотя бы 2-х эл-тов приводит к др. посл-ти.

Основные способы задан. посл-ти:

а) явный, когда предъявляется ф-ла позволяющая по заданному n вычислить любой эл-т n, т.е. xn=f(n), где f- некоторая ф-ция нат. эл-та.

б) неявный, при котором задается некоторое рекуррентное отношение и несколько первых членов посл-ти.

Пример:

а) xn=5n x1=5, x2=10

б) x1=-2 xn=4n-1 –3, n=2,3… х2=-11, х3=-47

Ограниченные последовательности(ОП)

Посл-ть {xn} наз-ся огран. сверху(снизу), если найдется какое-нибудь число {xn} M(m) xn£M "n (xn³m "n) посл-ть наз-ся огранич., если она огранич. сверху и снизу.

Посл-ть {xn} наз-ся неогранич., если для любого полного числа А сущ-ет эл-т хn этой посл-ти, удовлетворяющий неравенству ½xn½>А.

Сходящиеся и расходящиеся посл-ти

Св-ва сходящихся посл-тей

Теорема «Об единственности пределов»

Теорема «Сходящаяся посл-ть ограничена»

Теорема «О сходимости монотон. посл-ти»

4. Сходящиеся и расходящиеся посл-ти

Большое внимание уд-ся выяснению вопроса: обладает ли данная посл-ть сл-щим св-вом (сходимости) при неогранич. Возрастании номеров посл-ти эл-ты посл-ти сколь угодно близко приближаются к некоторому числу а или же этого св-ва нет.

Опр Если для любого e >0 найдется такой номер N, для любого n >N:½xn-a½< e

Все посл-ти имеющие предел наз-ся сходящимися, а не имеющее его наз-ся расходящимися.

Связь сходящихся посл-тей и б/м.

Дает сл. теорему

Теорема Для того чтобы посл-ть xn имела пределом число а необходимо, чтобы эл-ты этой посл-ти можно было представить в виде xn=a+an, где посл-ть {an}®0, т.е. является б/м.

Док-во

а) Допустим, что xn®a и укажем посл-ть an удовл. равенству xn=a+an. Для этого просто положим an=xn-a, тогда при n®¥½xn-a½ равно растоянию от xn до а ® 0 => an б/м и из равенства преобразования определяю an получаем xn=a+an.

Свойство б/м

Если {xn},{yn}- любые посл-ти, то их сумма {xn+yn}, это есть пос-ть с общим членом xn+yn. Аналогично с разностью, частным и умножением.

Т-ма о св-вах б/м

а) {xn}и{yn}-б/м пос-ти, б/м

1) их сумма, разность и произведение являются б/м

2) Произведение любой огранич. посл-ти на б/м являются б/м

!О частном не говорят, т.е. частное б/м может не быть б/м.

Посл-ть {xn} явл. б/б, если для любого числа с>0 сущ-ет номер N для всех номеров n>N ½xn½>c.

!Понятие б/б не совпадает с неограниченной: посл-ть может быть неогранич., но не является б/б.

Пример 1,1/2,3,1/4,5,1/6,7… явл. неогранич., т.е. принимает сколь угодно большие по модулю значения, однако в ней имеются эл-ты со сколь угодно большими номерами принимающие дробные знач. и сколь угодно малые по модулю.

Св-ва сходящихся посл-тей

Теорема «Об единственности пределов»

Если посл-ть xn сходится, то она имеет единственный предел.

Док-во (от противного)

{xn} имеет два разл. Предела a и b, а¹b. Тогда согласно определению пределов любая из окрестностей т. а содержит все эл-ты посл-ти xn за исключением конечного числа и аналогичным св-вом обладает любая окрестность в точке b. Возьмем два радиуса e= (b-a)/2, т.к. эти окрестности не пересекаются, то одновременно они не могут содержать все эл-ты начиная с некоторого номера. Получим противоречие теор. док-на.

Теорема «Сходящаяся посл-ть ограничена»

Пусть посл-ть {xn}®а e >о N:"n>N½xn-a½N => что каждый из членов посл-ти удовлетворяет неравенству½xn½£ c = max {½a-e½,½a+e½,½xn½,…,½xn-1½}

Теорема «Об арифметических дейсьвиях»

Пусть посл-ть {xn}®a,{yn}®b тогда арифметические операции с этими посл-тями приводят к посл-тям также имеющие пределы, причем:

а) предел lim(n®¥)(xn±yn)=a±b

б) предел lim(n®¥)(xn*yn)=a*b

в) предел lim(n®¥)(xn/yn)=a/b, b¹0

Док-во:

а)xn±yn=(а+an)±(b+bn)=(a±b)+(an±bn) Правая часть полученная в разности представляет сумму числа a+b б/м посл-тью, поэтому стоящая в левой части xn+yn имеет предел равный a±b. Аналогично др. св-ва.

б) xn*yn=(а+an)*(b+bn)=ab+anb+abn+anbn

an*b – это произведение const на б/м

а*bn®0, anbn®0, как произведение б/м.

=> поэтому в правой части стоит сумма числа а*b+ б/м посл-ть. По т-ме О связи сходящихся посл-тей в б/м посл-ти в правой части xn*yn сводится к a*b

Практический вывод состоит в том, что нахожд. пределов посл-тей заданных сл. выражениями можно сводить к более простым задачам вычисления lim от составляющих этого выр-ния

Посл-ть {xn} наз-ся возр., если x1<…

неубывающей, если x1£x2£…£xn£xn+1£…; убывающей, если x1>x2>…>xn>xn+1>…; невозр., если x1³x2³…³xn³xn+1³…

Все такие посл-ти наз-ся монотонными. Возр. и убыв. наз-ся строго монотонными

Монотонные посл-ти ограничены с одной стороны, по крайней мере. Неубывающие ограничены снизу, например 1 членом, а не возрастыющие ограничены сверху.

Теорема «О сходимости монотон. посл-ти»

Всякая монотонная посл-ть явл-ся сходящейся, т.е. имеет пределы.

Док-во Пусть посл-ть {xn} монотонно возр. и ограничена сверху. X – все мн-во чисел которое принимает эл-т этой посл-ти согласно усл. Теоремы это мн-во огранич., поэтому по соотв. Теореме оно имеет конечную точную верх. грань supX xn®supX (обозначим supX через х*). Т.к. х* точная верх. грань, то xn£x* " n. " e >0 вып-ся нер-во $ xm(пусть m- это n с крышкой):xm>x*-e при " n>m => из указанных 2-х неравенств получаем второе неравенство x*-e£xn£x*+e при n>m эквивалентно ½xn-x*½m. Это означает, что x* явл. пределом посл-ти.

Экспонента или число е

Ф-ции одной переменной

Обратные ф-ции

6. Экспонента или число е

Р-рим числ. посл-ть с общим членом xn=(1+1/n)^n (в степени n)(1) . Оказывается, что посл-ть (1) монотонно возр-ет, ограничена сверху и сл-но явл-ся сходящейся, предел этой пос-ти наз-ся экспонентой и обозначается символом е»2,7128…

Док-ть сходимость посл-ти (1)

Для док-ва введем вспом-ю ф-цию y=(1+x)^1/x, x>0 Ясно что при знач. x=1,1/2,1/3,…,1/n,… значение ф-ции y совпадает с соответствующими эл-ми (1).

Док-м что ф-ция у монотонно убывает и огран. сверху => монотонное возр. посл-ти (1) и ограниченность ее сверх. Поскольку lg x явл-ся монотонно возр., но монотонное убыв. ф-ции у и ее огранич. сверху эквивалентны том, что ф-ция lgy, которая равняется 1/хlg(1+x) (2) имеет те же самые св-ва, т.е. 01/x2* *lg(1+x2) (3). Огранич. сверху $ M:1/xlg(1+x)£lgM "x>0 (4). Возьмем любую лин. ф-цию вида y=kx которая превосходит lg(1+x) при всех x>0.

tga1=(lg(1+x1))/x1 a1>a2=>tga1>tga2

tga2=(lg(1+x2))/x2

Поскольку a1>a2, то tga1>tga2, а это равносильно равенству (3). Поскольку y>lg(1+x) "x>0 => kx>

>lg(1+x) "x>0

Принимая во внимания ф-ции у с пос-ть xn приходим к нужному утверждению. Число е явл-ся неизбежным спутником динамических процессов: почти всегда показатели изменяющиеся во времени характеризующие такие процессы зависят от времени через экспонициальную ф-цию y=e^x и ее модификации.

Пр-р: если ставка сл-ных % равна r и инвестор положил в банк первоначальный вклад равный Р причем % начисляются m раз в год (r- годовая ставка) тогда через n- лет наращенная сумма нач-ся по ф-ле сл. % при m кратном их начислению.

Sn=P(1+r/m)^mn (5) Предположим теперь % нач-ся непрерывным образом, т.е. число периодов нач-ния неограничено ув-ся. Мат-ки это соотв-ет тому, что выражение (5) надо р-равать, как общий член посл-ти Xm, а непрерывному нач-нию соот-ет наращенная ф-ция lim(n®¥)P(1+r/m)^mn=Pe^rn

Lg(e)x имеет спец. Обозначение lnx.

Принцип вложенных отрезков

Пусть на числовой прямой задана посл-ть отрезков (a1,b1),(a2,b2),…,(an,bn),…

Причем эти отрезки удовл-ют сл. усл.:

1) каждый посл-щий вложен в предыдущий, т.е. (an+1,bn+1)Ì(an,bn), "n=1,2,…;

2) Длины отрезков ®0 с ростом n, т.е. lim(n®¥)(bn-an)=0. Посл-ть с указанными св-вами наз-ют вложенными.

Теорема Любая посл-ть вложенных отрезков содержит единную т-ку с принадлежащую всем отрезкам посл-ти одновременно, с общая точка всех отрезков к которой они стягиваются.

Док-во {an}-посл-ть левых концов отрезков явл. монотонно не убывающей и ограниченной сверху числом b1.

{bn}-посл-ть правых концов монотонно не возрастающей, поэтому эти посл-ти явл. сходящимися, т.е. сущ-ют числа с1=lim(n®¥)an и с2=lim(n®¥)bn => c1=c2 => c - их общее значение. Действительно имеет предел lim(n®¥)(bn-an)= lim(n®¥)(bn)- lim(n®¥)(an) в силу условия 2) o= lim(n®¥)(bn-an)=с2-с1=> с1=с2=с

Ясно что т. с общая для всех отрезков, поскольку "n an£c£bn. Теперь докажем что она одна.

Допустим что $ другая с‘ к которой стягиваются все отрезки. Если взять любые не пересекающиеся отрезки с и с‘, то с одной стороны весь «хвост» посл-тей {an},{bn} должен нах-ся в окрестностях т-ки с‘‘(т.к. an и bn сходятся к с и с‘ одновременно). Противоречие док-ет т-му.

Принцип вложенных отрезков

Т-ма. Любая пос-ть вложенных отрезков содержит единств. т-ку сÎвсем отрезкам посл-ти одновременно, к которой они стягиваются.

Док-во. {an} пос-ть левых концов явл. монотонно неубыв. И огран. свеху числом b1; посл-ть правых концов {bn} монотонно не возр. и ограничена снизу а1, поэтому эти посл-ти сходящ., т.е. $ числа c1=lim(n®¥)an и c2=lim(n®¥)bn.

Докажем что с1=с2 и сл-но их общая знач. может обозначить через с. Действ. имеется предел lim(n®¥)(bn-an)= lim(n®¥)bn® lim(n®¥)an=c2-c1=c ясно что с общая для всех отрезков поскольку для " n an£c£bn. Осталось доказать единство данной т-ки (от противного). Допустим есть c‘¹c к которой стягиваются все отрезки. Если взять любые пределы окр. точек с и с‘, то с одной стороны весь «хвост» {an}, {bn}, должен нах-ся в окрестности т-ки с, а др. в с‘, т.к. an и bn® c и c‘ одновр. Противореч. док-ет т-му.

7.Ф-ции одной переменной

Если задано правило по которому каждому значению перем. Величины х из мн-ва Х ставится соответствие 1 значению перем. У то в этом случае говорят, что задана ф-ция 1-й переменной.

Y=f(x); x –аргумент независ. перемен., y- зав. пер.

X=Df=D(f) y={y;y=f(x),xÎX} x1ÎX1, y1=f(x1)

1) аналит. способ; 2)Табличный способ;

3) Графический способ;

4)Min и max ф-ции: ф-ция f(x) ограничена, если огран. ее мн-во знач У, т.е. $ m,M: m£f(x)£M "xÎX

m£f(x) "xÎX => огр. сн.; f(x)£M, "xÎX=> огр. св.

Обратные ф-ции

Если задано правило по которому каждому значению yÎY ставится в соответствие ® ед. знач. х, причем y=f(x), то в этом случае говорят, что на мн-ве Y определена ф-ция обратная ф-ции f(x) и обозначают такую ф-цию x=f^-1(y).

Предел ф-ции в точке

Свойства предела ф-ции в точке

Односторонние пределы ф-ции в т-ке:

Предел ф-ции в т-ке

Предел и непрерывность функции

Предел. Односторонний предел.

Предел ф-ции в точке

y=f(x) X

опр. " {xn} ÌX, xn®x0

f(xn)®A,=> f(x) в т. x0 (при , xn®x0) предел = А

А=lim(x®x0)f(x) или f(x)®A при x®x0

Т-ка x0 может Î и Ï мн-ву Х.

Свойства предела ф-ции в точке

1) Если предел в т-ке сущ-ет, то он единственный

2) Если в тке х0 предел ф-ции f(x) lim(x®x0)f(x)=A

lim(x®x0)g(x)£B=> то тогда в этой т-ке $ предел суммы, разности, произведения и частного. Отделение этих 2-х ф-ций.

а) lim(x®x0)(f(x)±g(x))=A±B

б) lim(x®x0)(f(x)*g(x))=A*B

в) lim(x®x0)(f(x):g(x))=A/B

г) lim(x®x0)C=C

д) lim(x®x0)C*f(x)=C*A

Док-во xn®x0, $ lim(x®x0)f(x)=A по опр. f(xn)®A {f(xn)}

Односторонние пределы ф-ции в т-ке:

Опр. А - предел ф-ции f(x) справа от точки х0, если f(x)®A при х®х0, и x>x0

Формально это означает, что для любой посл-ти {xn}®x0, вып-ся условие xn>x0, f(x)®A. Обозначим f(x0+0) и f(x0+) lim(x®x0+0)f(x)®

И также с минусами.

Признак $ предела

Т-ма Для того чтобы f(x) имела предел в т-ке х0 необх., тогда в этой т-ке ф-ция f имеет совпадающ. Между собой одностор. предел (f(x0+)=f(x0-) (1), которые равны пределу ф-ции.

Док-во. f(x) имеет в т-ке х0 предел А, тогда f(x)®A независимо от того приближается ли х к х0 по значению больше х0 или меньше это означает равенство (1)

Предел ф-ции в т-ке

Число А наз-ся пределом ф-ции в т-ке х0 если "e>0 найдется такое число В>0, для всех х отличных от х0 и (х-х0)<0 должно ½f(x)-A½

" e >0 из ½х-х0½

Пусть ½f(x)-x0½ ½f(x)-x0½

Свойства пределов. Непрерывность ф-ции.

Ф-ция f(x) непрерывна в т-ке х0 если предельное значение в этой т-ке равно самому знач. в этой точке.

Предел и непрерывность функции

Пусть ф-ция f(x) определена на некотором пр-ке Х* и пусть точка х0ÎХ или х0ÏХ.

Опр. Число А наз-ся пределом ф-ции f(x) в точке х=х0, если для " e>0 $ d>0 такое, что для всех хÎХ, х¹х0, удовлетвор. неравенству ½х-х0½

Пример Используя определение, док-ть что ф-ция f(x)=C(C-некоторое число) в точке х=х0(х0-любое число) имеет предел, равный С, т.е. lim (x®x0)C=C

Возьмем любое e>0. Тогда для любого числа d>0 выполняется треюуемое неравенство ½f(x)-C½=½C-C½=0 lim(x®x0)C=C

Свойства пределов. Непрерывность ф-ции.

Теорема. Пусть ф-ции f(x) и g(x) имеют в т-ке х0 пределы В и С. Тогда ф-ции f(x)±g(x),f(x)g(x) и f(x)/g(x) (при С¹0) имеют в т-ке х0 пределы, равные соответственно В±С, В*С, В/С, т.е. lim(f(x)±g(x))= B±C, lim(f(x)*g(x))= B*C, lim(f(x)/g(x))= B/C

Теорема также верна если х0 явл. +¥, -¥, ¥

Опр. Ф-ция f(x) наз-ся непрерыной в точке х=х0, если предел ф-ции и ее значение в этой точке равны, т.е. lim(x®x0)f(x)=f(x0)

Теорема Пусть ф-ции f(x) и g(x) непрерывны в т-ке х0. Тогда ф-ции f(x)±g(x), f(x)*g(x) и f(x)/g(x) также непрерывны в этой т-ке.

10. Предел. Односторонний предел.

Опр.Числом А наз-ся предел f(x) в т-ке х0, если для любой окрестности А$ окрестность (х0):"xÎокрестности (x0) выполняется условие f(x)Îокрестности.

Теорема Все определения предела эквивалентны между собой.

Опр. Число А называется пределом ф-ции f(x) справа от т.х0(правым предело f(x0)) если f(x)®A при х®х0, х>x0

Формально это означает, что для любой посл-ти сходящейся к х0 при xn>x0 выполняется условие f(xn)®A

Запись: f(x0+o), f(x0+ ). lim(x®x0+o)f(x) где запись x®x0+o как раз означает стремление к х0 по мн-ву значений >чем х0.

Опр. Предел слева аналогично и исп-ся запись f(x0-o);f(x0-)

Теорема. Для того чтобы ф-ция f(x) имела предел в точке х0 необходимо и достаточно когда в этой т-ке ф-ция имеет совпадающие между собой одностороние пределы (f(x0+)=f(x0-)) значение которые равны пределу ф-ции, т.е. f(x0+)=

f(x0-)=lim(x®x0)f(x)=A

Док-во

а) допустим ф-ция имеет в точке х0 предел равный А, тогда f(x)® А независимо от того, приближается ли х к х0 по значению > x0 или <, а это означает равенство 1.

б) пусть односторонние пределы сущ-ют и равны f(x0+)=f(x0-) докажем, что $ просто предел. Возьмем произвольную {xn}®х0 разобьем если это необходимо эту последовательность на две подпоследовательности.

1. члены которые нах-ся слева от х0 {x‘n};

2. члены которые нах-ся справа от х0 {х‘‘n};

x’n®x0-o x’’n®x0+o, т.к. односторонние пределы $ и равны, то f(x‘n)®A и f(x‘‘n)®A поэтому посл-ть значений ф-ций {f(xn)} которая также след. справа:

1){f(x‘n)} и {f(x‘‘n)} имеет f(xn)®A на основании связи между сходимостью последовательностей

Пределы ф-ции на бесконечности

Два замечательных предела

Б/м ф-ции и их сравнения

Непрерывные ф-ции. Непрерывность.

11. Пределы ф-ции на бесконечности

Они нужны для исследования поведения ф-ции на переферии.

Опр. ф-ция f(x) имеет предел число А при x®+¥ если " {xn} которая ®к +¥ соответствующая ей последовательность {f(xn)}®A в этом случае мы пишем lim(x®+¥)f(x)=A. Совершенно аналогично с -¥.

Опр. Будем говорить что ф-ция f(x) имеет пределом число А при x®¥ {f(xn)} сходится к А

Бесконечные пределы ф-ции

Вводятся как удобные соглашения в случае, когда конечные пределы не $-ют.

Р-рим на премере: lim(x®o+)(1/x)

Очевидно не сущ-ет, т.к. для " {xn}®+о посл-ть {f(xn)}={1/xn}, а числ. посл-ть сводятся к +¥.

Поэтому можно записать lim(x®o+)1/x=+¥ что говорит о неограниченных возрастаниях предела ф-ции при приближении к 0.

Аналогично с -¥.

Более того символы +¥ и -¥ употребляются в качестве предела ф-ции в данной т-ке лишь условно и означают например, что если {xn}®x0 то {f(xn)}®±¥,¥

12. Два замечательных предела

1) lim(x®0)sin/x=1

2) Явл. обобщением известного предела о посл-ти. Справедливо сл. предельное соотношение:

lim(n®¥)(1+1/n)^n=e (1)

lim(n®0)(1+x)^1/x=e (2)

t=1/x => при х®0 t®¥ из предела (2) => lim(x®¥) (1+1/x)^x=e (3)

Док-во

1)x®+¥ n x:n=(x) => n£x 1/(n+1)<1/x<1/n

Посколько при ув-нии основания и степени у показательной ф-ции, ф-ция возрастает, то можно записать новое неравенство (1/(n+1))^n£(1+1/n)^x£ (1+1/n)^(n+1) (4)

Рассмотрим пос-ти стоящие справа и слева. Покажем что их предел число е. Заметим (х®+¥, n®¥)

lim(n®¥)(1+1/(n+1))=lim(n®¥)(1+1/(n+1))^n+1-1= lim(n®¥)(1+1/(n+1))^n+1*lim(n®¥)1/(1+1/(n+1))=e

lim(n®¥)(1+1/n)^n+1= lim(n®¥)(1+1/n)^n* lim(n®¥)(1+1/n)=e*1=e

2) x®-¥. Сведем эту ситуацию к пред. Случаю путем замены переменной y=-x => y®+¥, при x®-¥.

lim(x®-¥)(1+1/x)^x=lim(y®+¥)(1-1/y)^-y= lim(y®+¥)((y-1)/y)^y=lim(y®+¥)(1+1/(y-1))^y=e

3) Пусть x®¥ произвольным образом это означает при любом любом выборе посл-ти xn сходящихся к ®¥ мы должны иметь в силу (3) соотношение lim(x®¥)(1+1/xn)^xn=e (5)

Условие 5~3, т.е расшифровка 3 на языке посл-ти. Выделим из посл-ти xn 2 подпосл-ти: {x‘n}®+¥,

{x‘‘n}®-¥. Для каждой посл-ти по доказанному в п.1 и п.2 справедливо предельное соотношение 5 если заменить xn®x‘nx‘‘n. По т-ме о связи

13. Б/м ф-ции и их сравнения

Опр. Ф-ция a(х) наз-ся б/м если ее предел в этой т-ке равен 0 из этого определения вытекает следующее св-во б/м ф-ций:

а) Алгебраическая сумма и произведение б/м ф-ций есть б/м ф-ции.

б) Произведение б/м ф-ции на ограниченную ф-цию есть б/м ф-ция, т.е. если a(х)®0 при х®х0, а f(x) определена и ограничена ($ С:½j(х)½£С)=> j(х)a(х)®0 при х®х0

Для того чтобы различать б/м по их скорости стремления к 0 вводят сл. понятие:

1) Если отношение 2-х б/м a(х)/b(х)®0 при х®х0 то говорят что б/м a имеет более высокий порядок малости чем b.

2) Если a(х)/b(х)®A¹0 при х®х0 (A-число), то a(х) и b(х) наз-ся б/м одного порядка.

3) если a(х)/b(х)®1 , то a(х) и b(х) наз-ся эквивалентными б/м (a(х)~b(х)), при х®х0.

4) Если a(х)/b^n(х)®А¹0, то a(х) наз-ся б/м n-ного порядка относительно b(х).

Аналогичные определения для случаев: х®х0-, х®х0+, х®-¥, х®+¥ и х®¥.

14. Непрерывные ф-ции. Непрерывность.

Опр. f(x) непрерывны Х0 и при этом ее предел в этой т-ке сущ-ет и равен знач. ф-ции в этой т-ке, т.е. lim(x®x0)f(x)=f(x0)-непрерывность ф-ции в т-ке. Из определения вытекает что в случае непрерывности ф-ции в данной т-ке вычитание пределов сводится к вычит. знач. ф-ции в данной т-ке. Равенство lim(x®x0)x=x0 (1‘). Т.е знак предела у непрерывной ф-ции можно вносить в аргумент ф-ции. Геометрически непрерывность ф-ции в т-ке х0 означает что ее график в этой т-ке не имеет разрыва. Если обозначить через Dу приращение ф-ции, т.е. Dу=f(x0+Dx)-f(x0) (приращение ф-ции в т. х0). «D» - символ приращения.

Приращение аргумента в т-ке х0 это соответствует тому, что текущая т. х, то условие непрерывности в т-ке х0 записывается сл. образом lim(Dx®0)Dy=0~ Dу®0 (1‘‘). Если в т-ке х0 ф-ция непрерывна, то приращение ф-ции ®0 приращение аргумента.

f(x) непрерывна в т-ке х0 <º> Dy®0 при Dх®0.

Если понятие предела приводит к понятию непр. Ф-ции то понятие одностороннего предела приводит к понятию односторонней непр. точки.

Опр. Если f(x) имеет предел справа в т-ке х0(=f(x0+)) и этот предел равен значению ф-ции ф-ции в т-ке х0, т.е. f(x0+)=lim(x®x0,x>x0)f(x)=f(x0), то ф-ция f(x) наз-ся непр. справа в т-ке х0.

Аналогично при вып-нии усл. f(x0-)=lim(x®x0, x

Ясно что справедлива сл.теорема вытекающая из связи односторонних пределов ф-ция f(x) непр. в т-ке х тогда, когда она непр. в этой т-ке, как справа, так и слева. f(x0-)=f(x0+)=f(x0)

Опр. Ф-ция f(x) непрерывна на некотором пр-ке D, если в каждой т-ке этого пр-ка при этом, если пр-ток D содержит граничную т-ку, то будем подразумевать соотв. одностор. непр. ф-ции в этой т-ке.

Пример Р-рим степенную производст. ф-цию

Q=f(k)=k^1/2 Q-объем выпуска продукции, к – объем капитала. D(f)=R+=>f(0)=0 и очевидно f(0+) $ и равно 0 => что данная ф-ция непр. на своей обл. опр-ния. Большинство ф-ций исп-мых в эк-ке непр. Например непр. ф-ции означает, что при малом изменении капитала мало будет меняться и выпуск пр-ции (DQ®0 при Dk®0). Ф-ции которые не явл. непр. наз-ют разрывными соотв. т-ки в которых ф-ция не явл. непр. наз-ся т-кой разрыва

Классификация т-ки разрыва

Непр. ф-ции на пр-ке

Теорема ВЕЙЕРШТРАССА

15. Классификация т-ки разрыва

Все т-ки р-рыва делятся на 3 вида: т. устранимого р-рыва; точки р-рыва 1-го , и 2-го рода.

а) если в т-ке х0 $ оба односторонних предела, которые совпадают между собой f(x0+)= f(x0-), но ¹ f(x0), то такая т-ка наз-ся точкой устранимого р-рыва.

Если х0 т-ка устранимого р-рыва, то можно перераспределить ф-цию f так чтобы она стала непр. в т-ке х0. Если по ф-ции f построить новую ф-цию положив для нее знач. f(x0)= f(x0-)=f(x0+) и сохранить знач. в др. т-ках, то получим исправл. f.

б) если в т-ке х0 $ оба 1-стороних предела f(x0±), которые не равны между собой f(x0+)¹f(x0-), то х0 наз-ся т-кой р-рыва первого рода.

в) если в т-ке х0 хотя бы 1 из односторонних пределов ф-ции не $ или бесконечен, то х0 наз-ся т-кой р-рыва 2-го рода.

При исслед. Ф-ции на непр. классификации возможных т-к р-рыва нужно применять во внимание сл. замечания:

1) Все элементарные ф-ции непрер. во внутренних т-ках своих областей определения => при исл. элементарных ф-ций нужно обращать внимание на гранич. т-ки обл-ти опр-ния.

2) Если ф-ция задана кусочно, т.е. различными соотношениями на частях своей обл. опр., то подозрительными на разрыв явл. граничные т-ки частей обл-ти опр.

3) Св-ва непр. ф-ций. Многие св-ва непр. ф-ций легко понять опираясь на их геометр. св-ва:

график непр. ф-ции на пр-ке D представляет сплошную(без р-рывов) кривую на пл-тях и след-но может отображена без отрыва ручки от бумаги.

I) Ф-ция непр. в т-ке х0 обязательно ограничена в окрестностях этой т-ки.(св-во локал. огранич-ти)

Док-во использует опр-ние на языке e и d. Если f непр. в т-ке х0 то взяв любое e>0 можно найти d>0 ½f(x)-f(x0)½

II) Св-ва сохранения знака Если f(x) непр. в т-ке х0 и f(x0)¹0 то $ окрестность этой т-ки в которой ф-ция принимает тот же знак что и знак х0.

III)Теорема о промежуточных знач. ф-ции f(x) непр. на отрезке (a,b) и f(a)=A, f(b)=B причем A¹B => CÎ(A,B) $ cÎ(a,b):f(c)=C f(c)=f(c‘)=f(c‘‘).

IV)Теорема о прохожд. непр. ф-ции через 0. Если f(x) непр. на отрезке (a,b) и принимает на концах этого отрезка значение разных знаков f(a) f(b), то $ т-ка сÎ(a,b).

Док-во Одновременно содержит способ нах-ния корня ур-ния f(x0)=0 методом деления отрезка пополам. f(d)=0 c=d Т-ма доказана.

Пусть f(d)¹0 (a,d) или (d,b) ф-ция f принимает значение разных знаков. Пусть для определ-ти (a,d) обозначим через (a1,b1). Разделим этот отрезок на 2 и проведем рассуждение первого шага док-ва в итоге или найдем искомую т-ку d или перейдем к новому отрезку (a2,d2) продолжая этот процесс мы получим посл-ть вложения отрезков (a1,b1)>(a2,b2) длинна которых (a-b)/2^n®0, а по т-ме о вл-ных отрезков эти отрезки стягиваются к т-ке с. Т-ка с явл. искомой с:f(c)=0. Действительно если допустить, что f(c)¹0 то по св-ву сохр. знаков в некоторой d окрестности, т-ке с f имеет тот же знак что и значение f(c) между тем отрезки (an,bn) с достаточно N попабают в эту окрестность и по построению f имеет разный знак на концах этих отрезков.

Непр. ф-ции на пр-ке

f непр. в т-ке х0 => f непрер. в т-ке х0 и f(x0)¹0 => f непр. на (a,b) и f(x)*f(b)=0 (f(x)*f(b)>0 в окр-ти х0) => $ сÎ(a,b). f(c)=0 сл-но 2 св-ва непр. ф-ции на отрезке обоснованны.

Т-ма 1(о огран. непр. ф-ции на отрезке). Если f(x) непр. на (a,b), тогда f(x) огран. на этом отрезке, т.е. $ с>0:½f(x)½£c "xÎ(a,b).

Т-ма 2( о $ экстр. непр. ф-ции на отр.). Если f(x) непр. на (a,b), тогда она достигает своего экстр. на этом отрезке, т.е. $ т-ка max X*:f(x*)³f(x) "xÎ(a,b), т-ка min X_:f(x_)£f(x) "xÎ(a,b).

Теорема ВЕЙЕРШТРАССА. Эти теремы неверны если замкнутые отрезки заменить на др. пр-ки

Контрпример 1. f(x)=1/2 на (0;1) ® f – неогр. на (0;1) хотя и непрерывны.

Контрпример 2. f(x)=x; на (0;1) f(x) – непр. inf(xÎ(0;1))x=0, но т-ки x_Î(0;1):f(x_)=0, т-ки x*, хотя sup(xÎ(0;1))x=1

Док-во т-мы 1. Используем метод деления отрезка пополам. Начинаем от противного; f неогр. на (a,b), разделим его, т.е. тогда отрезки (a;c)(c;b) f(x) неогр.

Обозн. (a1,b1) и педелим отрез. (a2,b2), где f-неогр. Продолжая процедуру деления неогр. получаем послед. влож. отрезки (an;bn) котор. оттяг. к т-ке d (d=c с надстройкой) из отрезка (a,b), общее для всех отр. Тогда с одной стороны f(x) неогр. в окр-ти т-ки d на конц. отрезка (an,bn), но с др. стороны f непр. на (a,b) и => в т-ке d и по св-ву она непр. в некоторой окрестности d. Оно огран. в d => получаем против. Поскольку в любой окр-ти т-ки d нах-ся все отрезки (an;bn) с достаточно большим 0.

Док-во т-мы 2. Обозначим E(f) – множиством значений ф-ии f(x) на отр. (a,b) по предыд. т-ме это мн-во огран. и сл-но имеет конечные точные грани supE(f)=supf(x)=(при хÎ(a,b))=M(<¥). InfE(f)= inff(x)=m(m>-¥). Для опр. докажем (a,b) f(x) достигает макс. на (a,b), т.е. $ х*:f(x)=M. Допустим противное, такой т-ки не $ и сл-но f(x)0

!0 1£c(M-f(x)) => f(x) £M-1/c "xÎ(a,b)

Однако это нер-во противор., т.к. М-точная верхн. грань f на (a,b) а в правой части стоит “C”

Следствие: если f(x) непр. (a,b)тогда она принимает все знач. заключ. Между ее max и min, т.е. E(f)=(m;M), где m и M –max и min f на отрезке.

Дифференцирование ф-ций

Пр-ные и дифференциалы выс. Порядков.

Теорема Ферма Теорема Ролля Теорема Логранджа Теорема Коши Правило Лопиталя

16. Дифференцирование ф-ций

Центральная идея диффер. ф-ций явл-ся изучение гладких ф-ций (без изломов и р-рывов кривые) с помощью понятия пр-ной или с помощью линейных ф-ций y=kx+b обладает простейшими наглядн. ф-циями; у=k‘ => k>0 то у возр. при всех х, k<0-то у убыв. при всех х, k=0 – ф-ция постоянна

Определение пр-ной

1) Пусть ф-ция y=f(x) определена по крайней мере в окр-тях т-ки х0, таким приращения Dх эл-нт. Составим соотв. ему приращения ф-ции т-ки х0. Dy=Df(x0)=f(x0+Dx)-f(x0)

Образуем разностное отношение Dy/Dx=Df(x0)/Dx (1) (это разностное отношение явл. ф-цией Dх, т.к. х0-фиксирована, причем при Dх®0 мы имеем дело с неопр. 0/0).

Опр. Пр-ной ф-ции y=f(x) наз-ся предел разностного отношения 1 (при условии если он $), когда Dх®0. Производная это предел отношения приращения в данной т-ке к приращению аргумента при усл., что посл-ть ® к 0. Эта производная обозначается через df(x0)/dx или f‘(x0), у‘ (если данная т-ка х0 подразумевается или же речь идет о пр-ной в любой текущей т-ке х. Итак согласно определению f‘(x0)=lim(Dx®0) (f(x0+Dx)-f(x0))/Dx (2)

Если ф-ция f(x) имеет в т-ке х0 пр-ную, т.е. предел в правой части (2) $, то говорят что f(x) дифференц. в т-ке х0.

2) Непрерывность и дифференцируемость

Т-ма. Если ф-ция f(x) дифференц. в т-ке х0 то она непрерывна в этой т-ке, причем имеет место разложения Df в т-ке х0 Df(x0)=f(x0+Dx)-f(x0)= f‘(x0)Dx+a(Dx)Dx (3), где a(Dx)-б/м ф-ия при Dх®0

Док-во. Заметим, что разложение (3) верно, что из него сразу следует что при Dх®0 Df(x0)®0, => в т-ке х0 ф-ция непр. Поэтому осталось док-ть рав-во (3). Если пр-ная $ то из определения (2) и связи предела с б/м =>, что $ б/м ф-ция a(Dх) такая что Df(x0)/Dx=f‘(x0)+a(Dx) отсюда рав-во (3) пол-ся умножением на Dx.

Примеры.

1)Пр-ная постоянная и ф-ция равна 0, т.е. y=c=const "x, тогда y‘=0 для "х. В этом случае Dy/Dx числитель всегда равен пустому мн-ву, сл-но это отношение равно 0, => значит эго отн-ние = 0.

2)Пр-ная степенной ф-ции, у=х^k, y‘=kx^(k-1) " kÎN. Док-м для к=0 исходя из опр-ния пр-ной. Возьмем " т-ку х и дадим приращение Dх составим разностное отношение Dу/Dх=(х+Dх)^2-x^2/Dx=2х+ Dх => lim(Dx®0)Dy/Dx=2x=y‘. В дейст-ти док-ная ф-ла р-раняется для любых к.

3)Пр-ная экспон-ной ф-ции, у=е^x => y‘=e^x. В данном случае Dy/Dx=(e^x+Dx-e^x)/Dx=e^x(e^Dx-1)/ Dx. Одеако предел дробного сомножителя = 1.

4)y=f(x)=½x½=(x, x>0;-x,x<0). Ясна что для " х¹0 производная легко нах-ся, причем при y‘=1при x>0 y‘=-1 при x<0. Однако в т-ке x=0 пр-ная не $. Причина с геом т-ки зрения явл. невозможность проведения бесисл. мн-во кассат. к гр-ку ф-ции. Все кассат. имеют угол от (-1,+1), а с аналит. т-ки зрения означает что прдел 2 не $ при x0=0. При Dx>0 Dy/Dx=Dx/Dx=1=>lim(Dx®0,Dx>0)Dy/Dx=1 А левый предел разн-го отн-ния будет –1. Т.к. одностор. пред. Не совпадают пр-ная не $. В данном случае $ одностор. пр-ная.

Опр. Правой(левой) пр-ной ф-ции в т-ке х0, наз-ся lim отношения (2) при усл. что Dх®0+(Dх®0-).

Из связи вытекает утвержд., если f(x) дифференц. в т-ке х0, то ее одностор. пр-ная также $ и не совпадает f‘(x0-) и f‘(x0+) обратно для $ пр-ной f‘(x0) необходимо, чтобы прав. и лев. пр-ные совпад. между собой. В этом случае они не совпад.

17. Пр-ные и дифференциалы выс. Порядков.

Пр-ная f‘(x) – первого порядка; f‘‘(x) – второго; f‘‘‘(x)-третьего; fn(x)=(f(n-1)(x))‘. Пр-ные начиная со второй наз-ся пр-ными выс. порядка.

Дифференциал выс. порядков

dy= f‘(x)dx – диф. первого порядка ф-ции f(x) и обозначается d^2y, т.е. d^2y=f‘‘(x)(dx)^2. Диф. d(d^(n-1)y) от диф. d^(n-1)y наз-ся диф. n-ного порядка ф-ции f(x) и обознач. d^ny.

Теорема Ферма. Пусть ф-ция f(x) определена на интервале (a,b) и в некоторой т-ке х0 этого интервала имеет наибольшее или наименьшее знач. Тогда если в т-ке х0 $ пр-ная, то она = 0, f‘(x0)=0.

2)Теорема Ролля. Пусть на отрезке (a,b) определена ф-ция f(x) причем: f(x) непрерывна на (a,b); f(x) диф. на (a,b); f(a)=f(b). Тогда $ т-ка сÎ(a,b), в которой f‘(c)=0.

3)Теорема Логранджа. Пусть на отрезке (a,b) определена f(x), причем: f(x) непр. на (a,b); f(x) диф. на (a,b). Тогда $ т-ка cÎ(a,b) такая, что справедлива ф-ла (f(b)-f(a))/b-a= f‘(c).

4)Теорема Коши. Пусть ф-ции f(x) и g(x) непр. на (a,b) и диф. на (a,b). Пусть кроме того, g`(x)¹0. Тогда $ т-ка сÎ(a,b) такая, что справедл. ф-ла (f(b)-f(a))/(g(b)-g(a))=f‘(c)/g‘(c).

Правило Лопиталя.

Раскрытие 0/0. 1-е правило Лопиталя. Если lim(x®a)f(x)= lim(x®a)g(x), то lim(x®a)f(x)/g(x)= lim(x®a)f‘(x)/g‘(x), когда предел $ конечный или бесконечный.

Раскрытие ¥/¥. Второе правило.

Если lim(x®a)f(x)= lim(x®a)g(x)=¥, то lim(x®a)f(x)/g(x)= lim(x®a)f‘(x)/g‘(x). Правила верны тогда, когда x®¥,x®-¥,x®+¥,x®a-,x®a+.

Неопред-ти вида 0¥, ¥-¥, 0^0, 1^¥, ¥^0.

Неопр. 0¥, ¥-¥ сводятся к 0/0 и ¥/¥ путем алгебраических преобразований. А неопр. 0^0, 1^¥, ¥^0 с помощью тождества f(x)^g(x)=e^g(x)lnf(x) сводятся к неопр вида 0

Выпуклые и вогнутые ф-ции

Т-ки перегиба

Выпуклость и вогнутость.

Б/б пол-ти

Гладкая ф-ция

Эластичность ф-ций

Выпуклые и вогнутые ф-ции

Для хар-ки скорости возр. или убыв. ф-ции, а также крутезны гр-ка ф-ции на участке монотонности вводится понятия вогн. вып-ти ф-ции на интервале, частности на всей числ. приямой.

Пр-р. Пусть ф-ция явл-ся пр-ной ф-цией некоторой фирмы, напр. объем вып-ка продукции, а арг. х-числ. раб. силы. Хар-ный график этой ф-ции имеет сл. вид у f(x) возр. для x>0. На инт. От (0,a) ф-ция возр. все быстрее. Его можно р-ривать, как этап образования фирмы вначале которого выпуск растет медленно, поскольку первые рабочие не прошли период адаптации, но с теч. времени эффект привл. доп. раб. рабочих становится все больше, и соотв. ув-ся крутизна графика. На (¥,a) ф-ция возр. все медл. и гр. становится все более пологой. а – это пороговое знач. числ. раб. силы начиная с которого привл. доп. раб. силы начиная с которого привл. раб. силы дает все меньший эффект в объемке вып-ка. А(х) возр. f‘(x)>0 $x³0, но на интервале от 0 до а (0;а) f‘(x) возр. в то время как (0;¥) f‘ убыв., а в т-ке а-max. По критерию монотонности это означает на (0;а) f‘‘(x)³0 (f-выпукла), а на (a;¥) f‘‘(x)£0 (f-вогнута).

Опр. Пусть f(x) дважды диф. ф-ция на (a,b), тогда:

1)назовем ф-цию f(x) выпуклой(вогн) на интервале (a,b), если 2-я пр-ная не отриц, т.е. f‘‘(x)³0 (f‘‘(x)£0) на (a,b)

2)Если в пункте 1 вып-ся строгие нер-ва 2-й пр-ной, то ф-ция наз-ся строго выпуклой(вогнутой) на интервале (a,b)

Т-ки перегиба

Опр. Т-ки разд. интервалы строгой выпуклости и строгой вогнутости наз-ся т-ми перегиба т. х0 есть т-ка перегибы, если f‘‘(x0)=0 и 2-я пр-ная меняет знак при переходе через х0=> в любой т-ке перегиба f‘(x) имеет локальный экстремум.

Геометр. т-ка перегиба хар-ся тем что проведенная касат. в этой т-ке имеет т-ки графика по разные стороны.

Выпуклость и вогнутость.

Опр. Ф-ция явл. выпуклой (вогнутой) на (a,b) если кассат. к граф-ку ф-ции в любой т-ке интервала, лежит ниже (выше) гр. ф-ции.

y=y0+f‘(x0)(x-x0)=f(x0)+f‘(x0)(x-x0) – линейная ф-ция х, который не превосходит f(x) и не меньше f(x) в случае вогнутости неравенства хар-щие выпуклость (вогнутость) через диф. f(x)³f(x0)+ f‘(x0)(x-x0) " x,x0Î(a;b) f вогнута на (а,b). Хорда выше (ниже), чем график для вып. ф-ций (вогн.) линейная ф-ция kx+b, в частности постоянна, явл. вып. и вогнутой.

Б/б пол-ти

Посл-ть {xn} наз-ся б/б, если для " пол-ного числа А $ номер N такой, что при n>N вып-ся нер-во ½xn½>A

Возьмем любое число А>0. Из неравенства ½xn½=½n½>A получаем n>A. Если взять N³А, то " n>N вып-ся ½xn½>A, т.е. посл-ть {xn} б/б.

Замечание. Любая б/б посл-ть явл. неограниченной. Однако неогранич. Посл-ть может и не быть б/б. Например 1,2,1,3,1,…,1,n… не явл. б/б поскольку при А>0 нер-во ½xn½>A не имеет места " xn с нечет. номерами.

Гладкая ф-ция

Сл. ф-ция f(x) тоже явл. гладкой, т.е. f‘ $ и непрерывна причем имеет место сл. ф-ла F‘(x)=f‘(j(x))*j‘(x) (4). Используя ф-лу (4) получаем y‘=(lnf(a))‘=f‘(x)/f(x) (5) – логарифмической пр-ной. Правая часть это скорость изменения у (ф-ция f(x)) приходится на ед-цу абсол. значения этого пок-ля поэтому логарифм. Произв. наз-ют темпом прироста показателя y или f(x). Пусть известна динамика изменения цены на некотором интервале, причем P(t) гладкая ф-ция. Что можно назвать темпом роста этой ф-ции, при t=R. Темп роста¹приросту.

Пр-р y=e^ax. Найдем темп прироста. f‘/f=темп прироста=ae^ax/e^ax=a. Экспонициальная ф-ция имеет постоянный темп прироста.

Эластичность ф-ций

Опр. Пусть гладкая ф-ция y=f(x) описывает изменение экономической переменной у от эк. пер. х. Допустим f(x)>0 => имеет смысл лог. пр-ная. Эл-ностью ф-ции f(x) или у наз-ся сл-щая вел-на опред-мая с помощью лог. пр-ной.

Ef(x)=x*f‘(x)/f(x)=x(lnf(x))‘ (6). Выясним эк. смысл этого показателя для этого заменим в (6) пр-ную ее разностным отношением Df(x0)/Dx и будем иметь Ef(x)»x(Df(x)/Dx)/f(x)=(Df(x)/f(x))/(Dx/x). В числителе стоит относит. Прирост ф-ции f в т-ке x, в знаменателе относ. прир. аргумента. => эл-ность ф-ции показывает на сколько % изменяется пок-ль y=f(x) при изменении перем. х на 1%. Эластичность – пок-ль реакции 1-й переменной на изменение другой.

Пр-р. р-рим ф-цию спроса от цены, пусть D=f(p)=-aP+b – линейная ф-ция спроса, где а>0. Найдем эластичность спроса по цене. Ed(P)=P*D‘/D=P*(-a)/(-aP+b)=aP/(aP-b)=> эл-ность линейной ф-ции не постоянна

Применение 1й пр-ной в исслед. ф-ций

Т-ма Ферма Т-ма Коши

Интервалы монотонности ф-ции

Т-ма Логранджа. Т-ма Ролля Т-ма Тейлора Т-ма Коши Правило Лопиталя.

Производная обратной ф-ции

Применение 1й пр-ной в исслед. ф-ций

Все применения базируются на опред-нии пр-ной, как предела разностного отношения, а также на сл-щей т-ме.

Т-ма Ферма. Ес

Подобные работы:

Актуально: