Атомические разложения функций в пространстве Харди

Міністерство Освіти України

Одеський державний університет

ім. І.І.Мечнікова

Інститут математики, економіки та механіки

Атомічні розкладення функцій

у просторі Харді

Дипломна робота

студентки V курсу

факультету математики

Семенцовой В.А.

Науковий керівник

Вартанян Г.М.

Одеса ­- 2000

Содержание

Введение.................................................................................... 3

Глава I. Основные сведения об интеграле Пуассона и

пространствах , и ................................. 8

§I.1. Интеграл Пуассона..................................................... 8

§I.2. Пространства ....................................................... 12

§I.3. Пространства и ......................................... 17

§I.4. Произведение Бляшке, нетангенциальная

максимальная функция............................................... 22

Глава II. Атомические разложения функции в пространстве

, пространство ВМО........................................ 26

§II.1. Пространство , критерий принадлежности

функции из пространству ....................... 26

§II.2. Линейные ограниченные функционалы на ,

двойственность и ВМО.................................. 32

Литература.................................................................................. 37

Введение.

Целью настоящей работы является изучение основных понятий и результатов, полученных в области пространств Харди, которая не изучалась в рамках университетского курса. В работе прослежена взаимосвязь между следующими понятиями : интеграл Пуассона, пространства , , и , раскрыта суть и структура этих объектов. Описание указанных понятий вводится именно в такой последовательности , так как определение каждого последующего объекта дается на основе понятий, расположенных левее в выше перечисленном ряду объектов.

Работа состоит из двух глав, каждая из которых делится на параграфы. В первой главе изучены свойства пространств , , , а во второй мы доказываем коитерий принадлежности функции из пространству и двойственность пространств и .

В работе мы рассматриваем случай периодических функций. Используемые обозначения имеют следующий смысл:

- пространство периодических, непрерывных на функций;

- пространство периодических, бесконечно дифференцируемых на функций;

- пространство периодических, суммируемых в степени р на функций, т.е.для которых , ;

- пространство периодических ограниченных на функций;

- носитель функции .

В §I.1.вводится понятие интеграла Пуассона: интегралом Пуассона суммируемой на (-p,p) 2p-периодической комплекснозначной функции называется функция

¦r ( x ) = ,

где , t Î ( -p, p ) - ядро Пуассона.

Здесь мы доказываем следующие свойства ядра Пуассона, которые мы неоднократно будем использовать в ряде доказательств:

а) ;

б) ;

в) для любого d>0

Основной целью данного параграфа являются две теоремы о поведении интеграла Пуассона при :

Теорема 1.

Для произвольной (комплекснозначной) функции ( -p, p ) , 1 £ p < ¥ , имеет место равенство

;

если же ¦ (x) непрерывна на ( -p, p ) и ¦ (-p) = ¦ (p) , то

.

Теорема 2 (Фату).

Пусть - комплекснозначная функция из . Тогда

для п.в. .

В этом параграфе мы обращались к следующим понятиям:

Определение1. Функция называется аналитической в точке , если она дифференцируема в этой точке и в некоторой ее окрестности. Говорят, что функция аналитична на некотором множестве,если она аналитична в каждой точке этого множества.

Определение2. Действительная функция двух действительных переменных называется гармонической в области , если и удовлетворяет уравнению Лапласа:

.

Определение3. Две гармонические функции и , связанные условиями Коши-Римана : , , называются гармонически сопряженными функциями.

Определение4. Под нормой пространства понимается

, .

Определение5. Под нормой пространства понимается

, .

Определение6. Пусть ( или ,). Модуль непрерывности ( соответственно интегральный модуль непрерывности) функции определяется равенством

, .

(, ).

Определение7. Последовательность функций, определенных на множестве Х с заданной на нем мерой, называется сходящейся почти всюду к функции , если для почти всех , т.е. множество тех точек , в которых данное соотношение не выполняется, имеет меру нуль.

В §I.2 мы рассматриваем пространства - это совокупность аналитических в единичном круге функций F (z) , для которых конечна норма

.

Основным результатом этого параграфа является теорема о том, что любую функцию () можно предсавить в виде

, , ,

где для п.в. , при этом

;

.

Использованные в данном параграфе понятия мы принимаем в следующих определениях:

Определение8. Говорят, что действительная функция , заданная на отрезке (a,b), имеет ограниченную вариацию, если существует такая постоянная , что каково бы ни было разбиение отрезка (a,b) точками выполнено неравенство .

Определение9. Действительная функция , заданная на отрезке (a,b), называется абсолютно непрерывной на (a,b), если для любого найдется число такое, что какова бы ни была система попарно непересекающихся интервалов , с суммой длин, меньшей : , выполняется неравенство .

В третьем параграфе первой главы мы переходим к рассмотрению пространств и . Пространство () представляет собой совокупность тех функций , , которые являются граничными значениями функций (действительных частей функций) из, т.е. представимы в виде (). Здесь мы получаем следующие результаты: при пространство совпадает с , а при р=1 уже, чем , и состоит из функций , для которых и .

В §I.4 мы вводим понятие произведения Бляшке функции , аналитической в круге с нулями , () с учетом их кратности:

,

где - кратность нуля функции при .

Здесь доказывается, что каждая функция представима в виде

, где не имеет нулей в круге и , - произведение Бляшке функции .

Затем мы рассматриваем понятие нетангенциальной максимальной функции . Пусть , , - произвольное число. Обозначим через , , область, ограниченную двумя касательными, проведенными из точки к окружности , и наибольшей из дуг окружности, заключенных между точками касания ( при вырождается в радиус единичного круга). Для положим

, ,

где - интеграл Пуассона функции . Функция называется нетангенциальной максимальной функцией для .

Тут же мы доказываем теорему об оценке : если (), , то и .

Первые результаты о максимальных функциях были получены в 1930 году Харди и Литтлвудом.

Во второй главе два параграфа.

В §II.1 рассматривается пространство . Как ранее отмечалось, оно уже, чем . Поэтому в данном параграфе большой интерес представляет теорема - критерий принадлежности функции пространству . Здесь вводится понятие атома: действительная функция называется атомом, если существует обобщенный интервал такой, что

а) ; б) ; в) .

Атомом назовем также функцию , . Под обобщенным интервалом понимается либо интервал из , либо множество вида().

Данный параграф посвящен аналогу теоремы, доказанной в 1974 году Р.Койфманом о том, что функция тогда и только тогда, когда функция допускает представление в виде

, , где , , - атомы. (*)

При этом , где inf берется по всем разложениям вида (*) функции , а с и С - абсолютные константы.

Роль атомических разложений заключается в том, что они в ряде случаев позволяют свести вывод глубоких фактов к относительно простым действиям с атомами.

В частночти, из атомического разложения функций, принадлежащих пространству , легко вытекает полученный в 1971 году Ч.Фефферманом результат о двойственности пространств и . Доказательству этого факта и посвящен второй параграф данной главы. Сперва мы вводим определение : пространство ВМО есть совокупность всех функций , удовлетворяющих условию

, (91)

где , а sup берется по всем обобщенным интервалам . А затем доказываем теорему о том, что .

Глава I.

Основные сведения об интеграле Пуассона и

пространствах , и

§I.1.Интеграл Пуассона.

Пусть ¦(x) , g(x) , xÎR1 –суммируемые на (-p, p) , 2p- периодические, комплекснозначные функции. Через f*g(x) будем обозначать свертку

f*g(x) =dt

Из теоремы Фубини следует, что свертка суммируемых функций также суммируема на (-p,p) и

cn ( f*g ) = cn ( f )× c-n ( g ) , n = 0, ±1 , ±2 , ... ( 1 )

где { cn ( f )} - коэффициенты Фурье функции f ( x ) :

cn (f)= -i n tdt , n = 0, ±1, ±2,¼

Пусть ¦ Î L1 (-p, p ) . Рассмотрим при 0 £ r < 1 функцию

¦r ( x ) = n ( f ) r|n | ei n x , x Î ( -p, p ) . ( 2 )

Так как для любых x Î ( -p, p ), n = 0, ±1, ±2,¼, а ряд сходится (так как согласно теореме Мерсера (4) коэффициенты Фурье любой суммируемой функции по ортогональной системе ограниченных в совокупности функций стремятся к нулю при ), то по признаку Вейерштрасса ряд в правой части равенства (2) сходится равномерно по х для любого фиксированного r , 0 £ r < 1 . Коэффициенты Фурье функции ¦r (х) равны cn ( fr ) = cn (f)× r| n | , n = 0 , ±1, ±2, ¼ , а это значит, что ¦r ( x ) можно представить в виде свертки :

¦r ( x ) = , ( 3 )

где

, t Î ( -p, p ) . ( 4 )

Функция двух переменных Рr (t) , 0 £ r <1 , t Î ( -p, p ) , называется ядром Пуассона , а интеграл (3) - интегралом Пуассона .

Следовательно,

Pr ( t ) = , 0 £ r < 1 , t Î ( -p, p) . ( 5 )

Если ¦Î L1 ( -p, p ) - действительная функция , то , учитывая , что

c-n ( f ) = , n = 0, ±1, ±2,¼, из соотношения (2) мы получим :

fr ( x ) =

= , ( 6 )

где

F ( z ) = c0 ( f ) + 2 ( z = reix ) ( 7 )

- аналитическая в единичном круге функция как сумма равномерно сходящегося по х ряда (5). Равенство (6) показывает, что для любой действительной функции ¦Î L1( -p, p ) интегралом Пуассона (3) определяется гармоническая в единичном круге функция

u ( z ) = ¦r (eix ) , z = reix , 0 £ r <1 , x Î ( -p, p ) .

При этом гармонически сопряженная с u (z) функция v (z) c v (0) = 0 задается формулой

v (z) = Im F (z) = . ( 8 )

Утверждение1.

Пусть u (z) - гармоническая ( или аналитическая ) в круге | z | < 1+e ( e>0 ) функция и ¦ (x) = u (eix) , xÎ( -p, p ) . Тогда

u (z) = ( z = reix , | z | < 1 ) ( 10 )

Так как ядро Пуассона Pr (t) - действительная функция, то равенство (10) достаточно проверить в случае, когда u (z) - аналитическая функция:

=, | z | < 1+ e .

Но тогда коэффициенты Фурье функции связаны с коэффициентами Фурье функции следующим образом :

и равенство (10) сразу следует из (2) и (3).

Прежде чем перейти к изучению поведения функции ¦r (x) при r®1 , отметим некоторые свойства ядра Пуассона:

а) ;

б) ; (11)

в) для любого d>0

Соотношения а) и в) сразу следуют из формулы (5), а для доказательства б) достаточно положить в (2) и (3) ¦ (х) º 1.

Теорема 1.

Для произвольной (комплекснозначной) функции ( -p, p ) , 1 £ p < ¥ , имеет место равенство

;

если же ¦ (x) непрерывна на ( -p, p ) и ¦ (-p) = ¦ (p) , то

.

Доказательство.

В силу (3) и свойства б) ядра Пуассона

. ( 12 )

Для любой функции , пользуясь неравенством Гельдера и положительностью ядра Пуассона , находим

.

Следовательно,

.

Для данного e > 0 найдем d = d (e) такое, что . Тогда для r , достаточно близких к единице, из свойств а)-в) мы получим оценку

.

Аналогично, второе утверждение теоремы 1 вытекает из неравенства

.

Теорема 1 доказана.

Дадим определения понятий "максимальная функция" и "оператор слабого типа", которые понадобятся нам в ходе доказательства следующей теоремы.

ОпределениеI.1.

Пусть функция , суммируема на любом интервале (a,b), a . Максимальной функцией для функции называется функция

,

где супремум берется по всем интервалам I , содержащим точку х.

Определение I.2.

Оператор называется оператором слабого типа (р,р) , если для любого y > 0

, .

Теорема 2 (Фату).

Пусть - комплекснозначная функция из . Тогда

для п.в. .

Доказательство.

Покажем, что для и

, ( 13 )

где С - абсолютная константа , а M ( f, x ) - максимальная функция для f (x)*). Для этой цели используем легко выводимую из (5) оценку

(К - абсолютная константа).

Пусть - такое число, что

.

Тогда для

.

Неравенство (13) доказано. Возьмем слабый тип (1,1) оператора . Используя его, найдем такую последовательность функций ,что

,

( 14 )

для п.в. .

Согласно (13) при xÎ (-p,p)

Учитывая , что по теореме 1 для каждого xÎ (-p, p) и (14)

из последней оценки получим

при r®1.

Теорема 2 доказана.

Замечание1.

Используя вместо (13) более сильное неравенство (59), которое мы докажем позже, можно показать, что для п.в. xÎ (-p, p) , когда точка reit стремится к eix по некасательному к окружности пути.

§I.2.Пространства Hp.

Определение I.3.

Пространство - совокупность аналитических в единичном круге функций F (z) , для которых конечна норма

. (15)

Пусть комплекснозначная функция удовлетворяет условиям

(16)

тогда функция F (z) , определенная равенством

(17)

принадлежит пространству , причем

. (18)

Действительно, аналитичность функции F (z) следует из (16) и равенства (2). Кроме того, в силу неравенства мы имеем

(*)

С другой стороны , по теореме 1 ( а при р=¥ в силу теоремы 2)

. Отсюда (**)

Учитывая (*) и (**) , получим (18).

Ниже мы докажем, что любую функцию можно представить в виде (17). Для этого нам потребуется

Теорема 3.

Пусть комплекснозначная функция j (t) имеет ограниченную вариацию на ( -p,p) и

(19)

Тогда j (t) абсолютно непрерывна на (-p,p).

Замечание2.

В (19) и ниже рассматривается интеграл Лебега-Стилтьеса, построенный по комплекснозначной функции ограниченной вариации j (t) . Мы говорим, что

j (t)= u (t)+ i v (t) имеет ограниченную вариацию (абсолютно непрерывна), если обе действительные функции u (t) и v (t) имеют ограниченную вариацию (соответственно абсолютно непрерывны). При этом интеграл

определен для каждой непрерывной на (-p,p) функции f (t) , а также если

- характеристическая функция замкнутого множества .

Доказательство теоремы 3.

Нам достаточно проверить, что для любого замкнутого множества ,

,

(20)

Для этой цели убедимся, что справедлива

Лемма 1.

Пусть F - замкнутое, а V - открытое множества , причем и

. Тогда для всякого , существует функция вида

, (21)

обладающая свойствами:

а) ;

б) ; (22)

в) .

Выведем из леммы 1 оценку (20), а затем докажем саму лемму 1.

Пусть , где - конечная или бесконечная последовательность дополнительных интервалов множества F, и для

.

Очевидно, что - открытое множество и .

Рассмотрим для данных функцию , построенную в лемме 1 для числа e и множества . Тогда нетрудно проверить(3), что если , а , то разность

. (23)

Но в силу (19) и равномерной сходимости ряда (21) (так как ряд Фурье бесконечно дифференцируемой функции сходится равномерно)

,

и мы получаем равенство (20).

Перейдем к доказательству леммы 1. Нам понадобится

ОпределениеI.4.

Средние Фейера - это средние вида

, где , , - ядро Дирихле,

, - ядро Фейера.

Отметим, что при ядро Фейера обладает следующими свойствами: а) , ; б) ,

Мз которых вытекает, что для и

,

Также известно (3), что средние Фейера равномерно сходятся к .

Пусть f(t) - непрерывная на (-p, p) функция, для которой

и

Так как средние Фейера равномерно сходятся к и

, то существует тригонометрический полином

(24)

такой, что

(25)

Пусть . Рассмотрим для каждого d>0 такую функцию , что

,

(функцию можно построить следующим образом: взять замкнутое множество с мерой , достаточно близкой к 2p, и положить

).

Так как (здесь число m то же, что в (24)), то для достаточно малых d>0 функция удовлетворяет соотношениям

(26)

При этом , если . Тогда средние Фейера функции h(t) имеют вид

и при достаточно большом N

(27)

Положим

, (28)

Так как h(t) - действительная функция, то , n=0,±1,±2,¼. Поэтому

и . (29)

Определим искомую функцию g(t) :

Ясно, что , а из (24) и (28) следует, что при n<0, т.е.

(30)

В силу соотношений (25), (27) и (29) для

,

а для

.

Наконец, для любого

.

Таким образом, функция g(t) обладает всеми нужными свойствами (22). Лемма1 , а вместе с ней и теорема 3 доказаны.

Теорема 4.

Пусть функция . Тогда для п.в. существует предел

(31)

При этом

1) , , ;

2) ;

3) .

Доказательство:

Нам достаточно доказать, что для каждой функции найдется функция такая, что имеет место 1). Действительно, если , то тем более и из 1) и теоремы 2 вытекает справедливость равенства (31) для п.в. . При этом и по теореме 1

. Наконец, из 1) следует, что

а тогда

.

Пусть . Для построения искомой функции положим

, , .

Функции , , имеют равномерно ограниченную по r вариацию на :

.

Следовательно, по теореме Хелли (2) найдутся функция ограниченной вариации и последовательность , такие, что в каждой точке и

(32)

для любой функции . При этом для n=1,2,...

(мы учли аналитичность функции F(z) в единичном круге) и , следовательно, по теореме 3 абсолютно непрерывна : существует функция , для которой

,

Тогда

, (33)

Зафиксируем число . Функция , аналитична в круге , поэтому согласно утверждению 1

, .

В пределе при из последнего равенства вытекает, что

, , .

Равенство 1) , а вместе с ним и теорема 4 доказаны.

§I.3.Пространства и .

Обозначим через класс тех функций , , которые являются граничными значениями функций из , т.е. представимы в виде

для п.в. , .

В силу пунктов 3) и 2) теоремы 4 и каждая функция удовлетворяет условию (16). С другой стороны, выше мы доказали, что для произвольной с условием (16) интеграл Пуассона (17) определяет функцию из . Следовательно,

. (34)

Из (34) вытекает, что (замкнутое) - подпространство пространства , а - банахово пространство с нормой (15).

Пусть . Положим

,

, (35)

ОпределениеI.5.

Если функция , то сопряженной к ней функцией называется функция , ,

где интеграл понимается в смысле главного значения, т.е. как предел при интегралов .

В дальнейшем нам понадобится

Утверждение2.

Для любой функции сопряженная функция существует и конечна п.в. на ; при этом

а) , y>0;

б) если , , то и .

Теорема 5.

Следующие условия эквивалентны :

а) ;

б) , , , ;

в) ;

г) , где - такая действительная функция, что ее сопряженная также принадлежит пространству :

. (36)

Доказательство:

Эквивалентность условий а) и б) непосредственно вытекает из (34), а эквивалентность условий а) и в) - из теорем 4 и 2.

Докажем, что из г) следует б). Для этого достаточно проверить, что в случае, когда функция и ее сопряженная суммируемы :, имеют место равенства

, (37)

Непосредственный подсчет по формуле (36) показывает, что

, , ,

. Следовательно, равенства (37) выполняются, если - произвольный тригонометрический полином.

Пусть фиксировано. Для произвольной функции и положим

, ,

где , , .

Покажем, что равенство (37) для фиксированного нами номера n вытекает из следующих свойств функций (наличие эт

Подобные работы:

Актуально: